Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition

Yong Chun Kim, Hyung-Ho Park, John S. Chun, Won Jong Lee

Research output: Contribution to journalArticle

93 Citations (Scopus)

Abstract

Aluminum oxide films were deposited on silicon wafers by plasma-enhanced chemical vapor deposition, using trimethylaluminum, N2O and He gases. The chemical composition, states of functional groups and microstructure of the aluminum oxide films were investigated using FTIR, XPS, AES and TEM. Etch rates were measured and related to the microstructure of the films. It was found that carbon and hydrogen atoms are incorporated less at higher deposition temperatures and are almost completely removed as gas phases, such as CO2 and H2O, by post-deposition heat treatment at 800 °C in an oxygen environment. Carbon atoms incorporated into the films are in the chemical form of AlCH3 or AlCOOH, and the atomic concentration varies from 2% at 300 °C to 5% at 120 °C. Hydrogen atoms are in the chemical form of AlOH, and the atomic concentration estimated from the absorbance FTIR band of the OH stretching mode varies from about 7% at 300 °C to about 28% at 120 °C. The aluminum oxide films deposited at 300 °C have a microcrystalline structure of hydrogen-stabilized γ-Al2O3 with an O/Al ratio of 1.6, whereas those deposited at 120 °C have an amorphous structure. Etching properties of the films were related to the change in the microstructure.

Original languageEnglish
Pages (from-to)57-65
Number of pages9
JournalThin Solid Films
Volume237
Issue number1-2
DOIs
Publication statusPublished - 1994 Jan 1

Fingerprint

Aluminum Oxide
Plasma enhanced chemical vapor deposition
structural analysis
Structural analysis
Oxide films
oxide films
Hydrogen
aluminum oxides
vapor deposition
Aluminum
Atoms
microstructure
Microstructure
hydrogen atoms
Carbon
Gases
carbon
Silicon wafers
Functional groups
Stretching

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Cite this

@article{6d743af43cbc43c6b314fed3a8a470ca,
title = "Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition",
abstract = "Aluminum oxide films were deposited on silicon wafers by plasma-enhanced chemical vapor deposition, using trimethylaluminum, N2O and He gases. The chemical composition, states of functional groups and microstructure of the aluminum oxide films were investigated using FTIR, XPS, AES and TEM. Etch rates were measured and related to the microstructure of the films. It was found that carbon and hydrogen atoms are incorporated less at higher deposition temperatures and are almost completely removed as gas phases, such as CO2 and H2O, by post-deposition heat treatment at 800 °C in an oxygen environment. Carbon atoms incorporated into the films are in the chemical form of AlCH3 or AlCOOH, and the atomic concentration varies from 2{\%} at 300 °C to 5{\%} at 120 °C. Hydrogen atoms are in the chemical form of AlOH, and the atomic concentration estimated from the absorbance FTIR band of the OH stretching mode varies from about 7{\%} at 300 °C to about 28{\%} at 120 °C. The aluminum oxide films deposited at 300 °C have a microcrystalline structure of hydrogen-stabilized γ-Al2O3 with an O/Al ratio of 1.6, whereas those deposited at 120 °C have an amorphous structure. Etching properties of the films were related to the change in the microstructure.",
author = "Kim, {Yong Chun} and Hyung-Ho Park and Chun, {John S.} and Lee, {Won Jong}",
year = "1994",
month = "1",
day = "1",
doi = "10.1016/0040-6090(94)90238-0",
language = "English",
volume = "237",
pages = "57--65",
journal = "Thin Solid Films",
issn = "0040-6090",
publisher = "Elsevier",
number = "1-2",

}

Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition. / Kim, Yong Chun; Park, Hyung-Ho; Chun, John S.; Lee, Won Jong.

In: Thin Solid Films, Vol. 237, No. 1-2, 01.01.1994, p. 57-65.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition

AU - Kim, Yong Chun

AU - Park, Hyung-Ho

AU - Chun, John S.

AU - Lee, Won Jong

PY - 1994/1/1

Y1 - 1994/1/1

N2 - Aluminum oxide films were deposited on silicon wafers by plasma-enhanced chemical vapor deposition, using trimethylaluminum, N2O and He gases. The chemical composition, states of functional groups and microstructure of the aluminum oxide films were investigated using FTIR, XPS, AES and TEM. Etch rates were measured and related to the microstructure of the films. It was found that carbon and hydrogen atoms are incorporated less at higher deposition temperatures and are almost completely removed as gas phases, such as CO2 and H2O, by post-deposition heat treatment at 800 °C in an oxygen environment. Carbon atoms incorporated into the films are in the chemical form of AlCH3 or AlCOOH, and the atomic concentration varies from 2% at 300 °C to 5% at 120 °C. Hydrogen atoms are in the chemical form of AlOH, and the atomic concentration estimated from the absorbance FTIR band of the OH stretching mode varies from about 7% at 300 °C to about 28% at 120 °C. The aluminum oxide films deposited at 300 °C have a microcrystalline structure of hydrogen-stabilized γ-Al2O3 with an O/Al ratio of 1.6, whereas those deposited at 120 °C have an amorphous structure. Etching properties of the films were related to the change in the microstructure.

AB - Aluminum oxide films were deposited on silicon wafers by plasma-enhanced chemical vapor deposition, using trimethylaluminum, N2O and He gases. The chemical composition, states of functional groups and microstructure of the aluminum oxide films were investigated using FTIR, XPS, AES and TEM. Etch rates were measured and related to the microstructure of the films. It was found that carbon and hydrogen atoms are incorporated less at higher deposition temperatures and are almost completely removed as gas phases, such as CO2 and H2O, by post-deposition heat treatment at 800 °C in an oxygen environment. Carbon atoms incorporated into the films are in the chemical form of AlCH3 or AlCOOH, and the atomic concentration varies from 2% at 300 °C to 5% at 120 °C. Hydrogen atoms are in the chemical form of AlOH, and the atomic concentration estimated from the absorbance FTIR band of the OH stretching mode varies from about 7% at 300 °C to about 28% at 120 °C. The aluminum oxide films deposited at 300 °C have a microcrystalline structure of hydrogen-stabilized γ-Al2O3 with an O/Al ratio of 1.6, whereas those deposited at 120 °C have an amorphous structure. Etching properties of the films were related to the change in the microstructure.

UR - http://www.scopus.com/inward/record.url?scp=0028195235&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028195235&partnerID=8YFLogxK

U2 - 10.1016/0040-6090(94)90238-0

DO - 10.1016/0040-6090(94)90238-0

M3 - Article

AN - SCOPUS:0028195235

VL - 237

SP - 57

EP - 65

JO - Thin Solid Films

JF - Thin Solid Films

SN - 0040-6090

IS - 1-2

ER -