Compositional control of pore geometry in multivariate metal-organic frameworks: An experimental and computational study

Laura K. Cadman, Jessica K. Bristow, Naomi E. Stubbs, Davide Tiana, Mary F. Mahon, Aron Walsh, Andrew D. Burrows

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

A new approach is reported for tailoring the pore geometry in five series of multivariate metal-organic frameworks (MOFs) based on the structure [Zn2(bdc)2(dabco)] (bdc = 1,4-benzenedicarboxylate, dabco = 1,8-diazabicyclooctane), DMOF-1. A doping procedure has been adopted to form series of MOFs containing varying linker ratios. The series under investigation are [Zn2(bdc)2-x(bdc-Br)x(dabco)]·nDMF 1 (bdc-Br = 2-bromo-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-I)x(dabco)]·nDMF 2 (bdc-I = 2-iodo-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-NO2)x(dabco)]·nDMF 3 (bdc-NO2 = 2-nitro-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-NH2)x(dabco)]·nDMF 4 (bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) and [Zn2(bdc-Br)2-x(bdc-I)x(dabco)]·nDMF 5. Series 1-3 demonstrate a functionality-dependent pore geometry transition from the square, open pores of DMOF-1 to rhomboidal, narrow pores with increasing proportion of the 2-substituted bdc linker, with the rhomboidal-pore MOFs also showing a temperature-dependent phase change. In contrast, all members of series 4 and 5 have uniform pore geometries. In series 4 this is a square pore topology, whilst series 5 exhibits the rhomboidal pore form. Computational analyses reveal that the pore size and shape in systems 1 and 2 is altered through non-covalent interactions between the organic linkers within the framework, and that this can be controlled by the ligand functionality and ratio. This approach affords the potential to tailor pore geometry and shape within MOFs through judicious choice of ligand ratios.

Original languageEnglish
Pages (from-to)4316-4326
Number of pages11
JournalDalton Transactions
Volume45
Issue number10
DOIs
Publication statusPublished - 2016 Jan 1

Fingerprint

Metals
Geometry
Ligands
Pore size
Doping (additives)
Topology
1,4-benzenedicarboxylate
Temperature

All Science Journal Classification (ASJC) codes

  • Inorganic Chemistry

Cite this

Cadman, Laura K. ; Bristow, Jessica K. ; Stubbs, Naomi E. ; Tiana, Davide ; Mahon, Mary F. ; Walsh, Aron ; Burrows, Andrew D. / Compositional control of pore geometry in multivariate metal-organic frameworks : An experimental and computational study. In: Dalton Transactions. 2016 ; Vol. 45, No. 10. pp. 4316-4326.
@article{68e3821157c0421d87397613b60e9f83,
title = "Compositional control of pore geometry in multivariate metal-organic frameworks: An experimental and computational study",
abstract = "A new approach is reported for tailoring the pore geometry in five series of multivariate metal-organic frameworks (MOFs) based on the structure [Zn2(bdc)2(dabco)] (bdc = 1,4-benzenedicarboxylate, dabco = 1,8-diazabicyclooctane), DMOF-1. A doping procedure has been adopted to form series of MOFs containing varying linker ratios. The series under investigation are [Zn2(bdc)2-x(bdc-Br)x(dabco)]·nDMF 1 (bdc-Br = 2-bromo-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-I)x(dabco)]·nDMF 2 (bdc-I = 2-iodo-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-NO2)x(dabco)]·nDMF 3 (bdc-NO2 = 2-nitro-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-NH2)x(dabco)]·nDMF 4 (bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) and [Zn2(bdc-Br)2-x(bdc-I)x(dabco)]·nDMF 5. Series 1-3 demonstrate a functionality-dependent pore geometry transition from the square, open pores of DMOF-1 to rhomboidal, narrow pores with increasing proportion of the 2-substituted bdc linker, with the rhomboidal-pore MOFs also showing a temperature-dependent phase change. In contrast, all members of series 4 and 5 have uniform pore geometries. In series 4 this is a square pore topology, whilst series 5 exhibits the rhomboidal pore form. Computational analyses reveal that the pore size and shape in systems 1 and 2 is altered through non-covalent interactions between the organic linkers within the framework, and that this can be controlled by the ligand functionality and ratio. This approach affords the potential to tailor pore geometry and shape within MOFs through judicious choice of ligand ratios.",
author = "Cadman, {Laura K.} and Bristow, {Jessica K.} and Stubbs, {Naomi E.} and Davide Tiana and Mahon, {Mary F.} and Aron Walsh and Burrows, {Andrew D.}",
year = "2016",
month = "1",
day = "1",
doi = "10.1039/c5dt04045k",
language = "English",
volume = "45",
pages = "4316--4326",
journal = "Dalton Transactions",
issn = "1477-9226",
publisher = "Royal Society of Chemistry",
number = "10",

}

Compositional control of pore geometry in multivariate metal-organic frameworks : An experimental and computational study. / Cadman, Laura K.; Bristow, Jessica K.; Stubbs, Naomi E.; Tiana, Davide; Mahon, Mary F.; Walsh, Aron; Burrows, Andrew D.

In: Dalton Transactions, Vol. 45, No. 10, 01.01.2016, p. 4316-4326.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Compositional control of pore geometry in multivariate metal-organic frameworks

T2 - An experimental and computational study

AU - Cadman, Laura K.

AU - Bristow, Jessica K.

AU - Stubbs, Naomi E.

AU - Tiana, Davide

AU - Mahon, Mary F.

AU - Walsh, Aron

AU - Burrows, Andrew D.

PY - 2016/1/1

Y1 - 2016/1/1

N2 - A new approach is reported for tailoring the pore geometry in five series of multivariate metal-organic frameworks (MOFs) based on the structure [Zn2(bdc)2(dabco)] (bdc = 1,4-benzenedicarboxylate, dabco = 1,8-diazabicyclooctane), DMOF-1. A doping procedure has been adopted to form series of MOFs containing varying linker ratios. The series under investigation are [Zn2(bdc)2-x(bdc-Br)x(dabco)]·nDMF 1 (bdc-Br = 2-bromo-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-I)x(dabco)]·nDMF 2 (bdc-I = 2-iodo-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-NO2)x(dabco)]·nDMF 3 (bdc-NO2 = 2-nitro-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-NH2)x(dabco)]·nDMF 4 (bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) and [Zn2(bdc-Br)2-x(bdc-I)x(dabco)]·nDMF 5. Series 1-3 demonstrate a functionality-dependent pore geometry transition from the square, open pores of DMOF-1 to rhomboidal, narrow pores with increasing proportion of the 2-substituted bdc linker, with the rhomboidal-pore MOFs also showing a temperature-dependent phase change. In contrast, all members of series 4 and 5 have uniform pore geometries. In series 4 this is a square pore topology, whilst series 5 exhibits the rhomboidal pore form. Computational analyses reveal that the pore size and shape in systems 1 and 2 is altered through non-covalent interactions between the organic linkers within the framework, and that this can be controlled by the ligand functionality and ratio. This approach affords the potential to tailor pore geometry and shape within MOFs through judicious choice of ligand ratios.

AB - A new approach is reported for tailoring the pore geometry in five series of multivariate metal-organic frameworks (MOFs) based on the structure [Zn2(bdc)2(dabco)] (bdc = 1,4-benzenedicarboxylate, dabco = 1,8-diazabicyclooctane), DMOF-1. A doping procedure has been adopted to form series of MOFs containing varying linker ratios. The series under investigation are [Zn2(bdc)2-x(bdc-Br)x(dabco)]·nDMF 1 (bdc-Br = 2-bromo-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-I)x(dabco)]·nDMF 2 (bdc-I = 2-iodo-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-NO2)x(dabco)]·nDMF 3 (bdc-NO2 = 2-nitro-1,4-benzenedicarboxylate), [Zn2(bdc)2-x(bdc-NH2)x(dabco)]·nDMF 4 (bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) and [Zn2(bdc-Br)2-x(bdc-I)x(dabco)]·nDMF 5. Series 1-3 demonstrate a functionality-dependent pore geometry transition from the square, open pores of DMOF-1 to rhomboidal, narrow pores with increasing proportion of the 2-substituted bdc linker, with the rhomboidal-pore MOFs also showing a temperature-dependent phase change. In contrast, all members of series 4 and 5 have uniform pore geometries. In series 4 this is a square pore topology, whilst series 5 exhibits the rhomboidal pore form. Computational analyses reveal that the pore size and shape in systems 1 and 2 is altered through non-covalent interactions between the organic linkers within the framework, and that this can be controlled by the ligand functionality and ratio. This approach affords the potential to tailor pore geometry and shape within MOFs through judicious choice of ligand ratios.

UR - http://www.scopus.com/inward/record.url?scp=84959561047&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84959561047&partnerID=8YFLogxK

U2 - 10.1039/c5dt04045k

DO - 10.1039/c5dt04045k

M3 - Article

AN - SCOPUS:84959561047

VL - 45

SP - 4316

EP - 4326

JO - Dalton Transactions

JF - Dalton Transactions

SN - 1477-9226

IS - 10

ER -