Confinement of Ultrasmall Cobalt Oxide Clusters within Silicalite-1 Crystals for Efficient Conversion of Fructose into Methyl Lactate

Yue Yan, Zihao Zhang, Seong Min Bak, Siyu Yao, Xiaobing Hu, Zulipiya Shadike, Chi Linh Do-Thanh, Feng Zhang, Hao Chen, Xilei Lyu, Kequan Chen, Yimei Zhu, Xiuyang Lu, Pingkai Ouyang, Jie Fu, Sheng Dai

Research output: Contribution to journalArticlepeer-review

Abstract

Chemocatalysis of sugars to methyl lactate (MLA) exhibits great advantages over the conventional fermentation approach because of its higher productivity and cost-effective separation process. However, widely used supported metal oxide catalysts suffer from deactivation resulting from sintering during the reaction and removal of coke at high temperatures. Herein, we report ultrasmall cobalt oxide clusters (∼1.7 nm) stabilized within silicalite-1 crystals catalyst (CoO@silicalite-1), exhibiting superior catalytic activity and resistance to sintering for the conversion of fructose into methyl lactate. HAADF-STEM, EDS-mapping, and XRD experiments identify the existence of confined CoO clusters. XANES and Raman spectra demonstrated the covalent interaction between CoO and silicalite-1. Thanks to the ultrasmall CoO particle size (∼1.7 nm), the CoO@silicalite-1 affords nearly 100-fold higher Co-mass-based activity (mg MLA/mg Co) compared with CoO or Co 3 O 4 particles outside the silicalite-1 framework. More importantly, this catalyst exhibits good reuse performance via the removal of coke with facile calcination.

Original languageEnglish
Pages (from-to)1923-1930
Number of pages8
JournalACS Catalysis
Volume9
Issue number3
DOIs
Publication statusPublished - 2019 Mar 1

Bibliographical note

Funding Information:
This work was supported by the National Natural Science Foundation of China (Nos. 21436007, 21676243, 21706228), the Zhejiang Provincial Natural Science Foundation of China (No. LR17B060002), and the Fundamental Research Funds for the Central Universities (No. 2018QNA4038). S.D. was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Seongmin Bak and Zulipiya Shadike at Brookhaven National Laboratory were supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the U.S. Department of Energy through the Advanced Battery Materials Research (BMR) Program, including Battery500 Consortium under contract DE-SC0012704. The XAS research used beamline 8-ID of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

Publisher Copyright:
© 2018 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)

Fingerprint

Dive into the research topics of 'Confinement of Ultrasmall Cobalt Oxide Clusters within Silicalite-1 Crystals for Efficient Conversion of Fructose into Methyl Lactate'. Together they form a unique fingerprint.

Cite this