Continuous microfluidic airborne bacteria separation using dielectrophoresis

H. S. Moon, Y. W. Nam, J. C. Park, H. I. Jung

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

Airborne microbes such as bacteria are a threat to public health. To prevent and control such dangerous biological particles, robust and real-time detection systems are necessary. For direct and real-time detection of airborne microbes, samples must be collected and typically re-suspended in liquid prior to detection; however, environmental particles such as dust are also trapped in such samples. Therefore, the isolation of target bacteria or selective collection of microbes from unwanted non-biological particles prior to detection is of great importance. Dielectrophoresis (DEP), the translational motion of particles in non-uniform electric fields, is an emerging technique that can rapidly separate biological particles in microfluidics. In this paper, we propose a new method for the separation of airborne microbes using DEP with a simple and novel curved electrode design for separating bacteria in a solution containing beads or dust which is taken from an airborne environmental sample. As there has been little research on analyzing environmental samples using microfluidics and DEP, this work describes a novel strategy for a rapid and direct bioaerosol monitoring system.

Original languageEnglish
Title of host publicationTRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems
Pages2038-2041
Number of pages4
DOIs
Publication statusPublished - 2009 Dec 11
EventTRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems - Denver, CO, United States
Duration: 2009 Jun 212009 Jun 25

Publication series

NameTRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems

Other

OtherTRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems
CountryUnited States
CityDenver, CO
Period09/6/2109/6/25

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture
  • Electrical and Electronic Engineering

Cite this

Moon, H. S., Nam, Y. W., Park, J. C., & Jung, H. I. (2009). Continuous microfluidic airborne bacteria separation using dielectrophoresis. In TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems (pp. 2038-2041). [5285664] (TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems). https://doi.org/10.1109/SENSOR.2009.5285664