Control of electromechanical properties of multilayer ceramic capacitors for vibration reduction

Won Suk Ohm, Dongjoon Kim, Byung Han Ko, No Cheol Park

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


A multilayer ceramic capacitor (MLCC) contains layers of ceramics as the dielectric materials. It has been known that Class 2 MLCCs, made of ferroelectric ceramics such as barium titanate, tend to suffer from electromechanical coupling hence vibration, which leads to the generation of acoustic humming noise, a source of annoyance in many modern electronic devices. In this article, a repoling method to control the electromechanical properties and the resulting vibration of MLCCs is presented. The repoling protocol hinges on the understanding that two independent mechanisms are responsible for the electromechanical coupling in MLCCs: piezoelectricity and electrostriction of the ceramic layers. The vibration due to piezoelectricity is linearly proportional to the input voltage, whereas the vibration due to electrostriction shows a quadratic dependence. Given the DC bias and the AC input voltage under normal operating conditions, the vibration is composed of the fundamental component at the frequency of the AC input and the second harmonic component spawned by the quadratic nonlinearity of electrostriction. It is demonstrated that by engineering the coefficients of piezoelectricity and electrostriction of the ceramic layers through a carefully designed repoling treatment, vibration reduction can be achieved for both the fundamental and second harmonic components. Especially, the fundamental component of vibration can be reduced significantly, as the piezoelectric effect is made to offset the electrostrictive effect.

Original languageEnglish
Pages (from-to)1982-1990
Number of pages9
JournalJournal of the American Ceramic Society
Issue number5
Publication statusPublished - 2018 May

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (2017M2B2A9A02049784).

Publisher Copyright:
© 2017 The American Ceramic Society

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry


Dive into the research topics of 'Control of electromechanical properties of multilayer ceramic capacitors for vibration reduction'. Together they form a unique fingerprint.

Cite this