Counterion diffusivity measurements support ion atmosphere relaxation control of electron transfer rates in a semi-solid ruthenium complex molten salt

Wei Wang, Dongil Lee, Anthony M. Leone, Royce W. Murray

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Molten salts of ruthenium complexes [Ru(bpy(CO2MePEG 350)2)3] [X]2 have been prepared in which the counterion X is either perchlorate ion or mixtures of perchlorate and iodide ions in mole ratios of either 8:2 or 7:3. Cyclic voltammetry in dilute, fluid solutions and in undiluted, semi-solid films of the iodide-containing molten salt shows two well-resolved iodide oxidation peaks and an anodic Ru(II/III) wave. The average diffusion coefficients of the counterions were obtained by ionic conductivity impedance measurements, while that of iodide (as a surrogate for perchlorate ion transport) was measured directly using iodide voltammetry. Agreement between the conductivity-based and Faradaic counterion transport data provides a quantitative validation of previous use of ionic conductivity data in study of the ion atmosphere relaxation model for electron transfer rate control in semi-solid redox hybrid polyether melts. A second purpose of this report is examination of the ion atmosphere relaxation model with the Ru complex melts. In this model, electron transfer rate constants are controlled by post-electron transfer relaxation of counterion distribution around the donor-acceptor pair - else back-transfer occurs. The electron transfer rate constants as a result reflect counterion diffusion rates, not their intrinsic values. The Ru(III/II) electron transfer rate constants in the [Ru(bpy(CO2MePEG350)2)3][X] 2 melts indeed vary linearly with counterion diffusion coefficients in a manner consistent with ion atmosphere relaxation electron transfer rate control.

Original languageEnglish
Pages (from-to)126-135
Number of pages10
JournalChemical Physics
Volume319
Issue number1-3
DOIs
Publication statusPublished - 2005 Dec 7

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Counterion diffusivity measurements support ion atmosphere relaxation control of electron transfer rates in a semi-solid ruthenium complex molten salt'. Together they form a unique fingerprint.

  • Cite this