Abstract
We propose for the first time an acetic acid (AcOH)-fragmented linker co-assembly strategy to create mesoporous defects in a microporous metal–organic framework (MOF), HKUST-1. By using various methods, including 1H NMR, FT-IR and XPS, we confirmed the successful co-assembly of AcOH fragments into the HKUST-1 structure. The prepared AcOH-fragmented HKUST-1 materials showed improved methane uptake (13% higher storage capacity at 65 bar and 16% higher deliverable capacity between 65 bar and 5 bar) and greatly increased surface areas (from 1787 to 2396 m2/g) and pore volumes (from 0.77 to 1.20 cc/g) compared to the parent HKUST-1. This is remarkable because HKUST-1 is considered to be one of the most promising materials for methane storage. Furthermore, we propose possible scenarios of defect formation in the AcOH-fragmented HKUST-1 materials from simulations of several hypothetical structures. This AcOH-fragmented linker co-assembly strategy could be compatible with a large number of carboxylate-based MOFs.
Original language | English |
---|---|
Pages (from-to) | 94-100 |
Number of pages | 7 |
Journal | Chemical Engineering Journal |
Volume | 335 |
DOIs | |
Publication status | Published - 2018 Mar 1 |
Bibliographical note
Funding Information:We would like to acknowledge the National Research Foundation of Korea under Grant ( NRF-2016R1A2B4014256 ). This work was also supported by the Technology Innovation Program ( 10048649 ) funded by the Ministry of Trade, Industry & Energy (MI, Korea).
Publisher Copyright:
© 2017 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Environmental Chemistry
- Chemical Engineering(all)
- Industrial and Manufacturing Engineering