TY - JOUR
T1 - Crystalline nanostructure and morphology of TriF-IF-dione for high-performance stable n-type field-effect transistors
AU - Kim, Beom Joon
AU - Park, Young Il
AU - Kim, Hyo Jung
AU - Ahn, Kwangseok
AU - Lee, Dong Ryeol
AU - Kim, Do Hwan
AU - Oh, Se Young
AU - Park, Jong Wook
AU - Cho, Jeong Ho
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/8/7
Y1 - 2012/8/7
N2 - The device performance and stability of n-type organic field-effect transistors (OFETs) based on 1,2,3,7,8,9-hexafluoro-indeno[1,2-b]fluorene-6,12- dione (TriF-IF-dione) were investigated. The electrical characteristics of TriF-IF-dione FETs were optimized by systematically controlling the dielectric surface properties via insertion of organic interlayers, such as self-assembled monolayers (NH 2-, CH 3-, and CF 3-) or polymeric layers (polystyrene, PS) at the semiconductor-SiO 2 dielectric interfaces. In particular, a thin PS buffer layer on the SiO 2 surface provided a device that performed well, with a field-effect mobility of 0.18 cm 2 V -1 s -1 and an on-off current ratio of 4.4 × 10 6. The improvements in the performance of TriF-IF-dione OFET conveyed by the PS interlayers were examined in terms of the crystalline nanostructure and the charge modulation effects in the channel. These properties were strongly correlated with, respectively, the hydrophobicity and the electron-donating characteristics of the dielectric surface. The TriF-IF-dione FETs with a PS interlayer showed excellent electrical stability attributed to high activation energies for charge trap creation. A complementary inverter comprising both p-type pentacene and n-type TriF-IF-dione was also successfully demonstrated.
AB - The device performance and stability of n-type organic field-effect transistors (OFETs) based on 1,2,3,7,8,9-hexafluoro-indeno[1,2-b]fluorene-6,12- dione (TriF-IF-dione) were investigated. The electrical characteristics of TriF-IF-dione FETs were optimized by systematically controlling the dielectric surface properties via insertion of organic interlayers, such as self-assembled monolayers (NH 2-, CH 3-, and CF 3-) or polymeric layers (polystyrene, PS) at the semiconductor-SiO 2 dielectric interfaces. In particular, a thin PS buffer layer on the SiO 2 surface provided a device that performed well, with a field-effect mobility of 0.18 cm 2 V -1 s -1 and an on-off current ratio of 4.4 × 10 6. The improvements in the performance of TriF-IF-dione OFET conveyed by the PS interlayers were examined in terms of the crystalline nanostructure and the charge modulation effects in the channel. These properties were strongly correlated with, respectively, the hydrophobicity and the electron-donating characteristics of the dielectric surface. The TriF-IF-dione FETs with a PS interlayer showed excellent electrical stability attributed to high activation energies for charge trap creation. A complementary inverter comprising both p-type pentacene and n-type TriF-IF-dione was also successfully demonstrated.
UR - http://www.scopus.com/inward/record.url?scp=84863642051&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863642051&partnerID=8YFLogxK
U2 - 10.1039/c2jm31698f
DO - 10.1039/c2jm31698f
M3 - Article
AN - SCOPUS:84863642051
VL - 22
SP - 14617
EP - 14623
JO - Journal of Materials Chemistry
JF - Journal of Materials Chemistry
SN - 0959-9428
IS - 29
ER -