Data synthesis based on generative adversarial networks

Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, Youngmin Kim

Research output: Contribution to journalConference article

7 Citations (Scopus)

Abstract

Privacy is an important concern for our society where sharing data with partners or releasing data to the public is a frequent occurrence. Some of the techniques that are being used to achieve privacy are to remove identifiers, alter quasi-identifiers, and perturb values. Unfortunately, these approaches suffer from two limitations. First, it has been shown that private information can still be leaked if attackers possess some background knowledge or other information sources. Second, they do not take into account the adverse impact these methods will have on the utility of the released data. In this paper, we propose a method that meets both requirements. Our method, called table-GAN, uses generative adversarial networks (GANs) to synthesize fake tables that are statistically similar to the original table yet do not incur information leakage. We show that the machine learning models trained using our synthetic tables exhibit performance that is similar to that of models trained using the original table for unknown testing cases. We call this property model compatibility. We believe that anonymization/perturbation/synthesis methods without model compatibility are of little value. We used four real-world datasets from four different domains for our experiments and conducted indepth comparisons with state-of-the-art anonymization, perturbation, and generation techniques. Throughout our experiments, only our method consistently shows balance between privacy level and model compatibility.

Original languageEnglish
Pages (from-to)1071-1083
Number of pages13
JournalProceedings of the VLDB Endowment
Volume11
Issue number10
DOIs
Publication statusPublished - 2018 Jan 1
Event44th International Conference on Very Large Data Bases, VLDB 2018 - Rio de Janeiro, Brazil
Duration: 2017 Aug 272017 Aug 31

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Computer Science(all)

Cite this

Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., & Kim, Y. (2018). Data synthesis based on generative adversarial networks. Proceedings of the VLDB Endowment, 11(10), 1071-1083. https://doi.org/10.14778/3231751.3231757