DCMIP2016: The splitting supercell test case

Colin M. Zarzycki, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Paul A. Ullrich, David M. Hall, Mark A. Taylor, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Xi Chen, Lucas Harris, Marco Giorgetta, Daniel Reinert, Christian Kühnlein, Robert Walko, Vivian LeeAbdessamad Qaddouri, Monique Tanguay, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Sang Hun Park, Joseph B. Klemp, William C. Skamarock

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

This paper describes the splitting supercell idealized test case used in the 2016 Dynamical Core Model Intercomparison Project (DCMIP2016). These storms are useful test beds for global atmospheric models because the horizontal scale of convective plumes is O(1 km), emphasizing non-hydrostatic dynamics. The test case simulates a supercell on a reduced-radius sphere with nominal resolutions ranging from 4 to 0.5 km and is based on the work of Klemp et al. (2015). Models are initialized with an atmospheric environment conducive to supercell formation and forced with a small thermal perturbation. A simplified Kessler microphysics scheme is coupled to the dynamical core to represent moist processes. Reference solutions for DCMIP2016 models are presented. Storm evolution is broadly similar between models, although differences in the final solution exist. These differences are hypothesized to result from different numerical discretizations, physics-dynamics coupling, and numerical diffusion. Intramodel solutions generally converge as models approach 0.5 km resolution, although exploratory simulations at 0.25 km imply some dynamical cores require more refinement to fully converge. These results can be used as a reference for future dynamical core evaluation, particularly with the development of non-hydrostatic global models intended to be used in convective-permitting regimes.

Original languageEnglish
Pages (from-to)879-892
Number of pages14
JournalGeoscientific Model Development
Volume12
Issue number3
DOIs
Publication statusPublished - 2019 Mar 5

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'DCMIP2016: The splitting supercell test case'. Together they form a unique fingerprint.

  • Cite this

    Zarzycki, C. M., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., Ullrich, P. A., Hall, D. M., Taylor, M. A., Dazlich, D., Heikes, R., Konor, C., Randall, D., Chen, X., Harris, L., Giorgetta, M., Reinert, D., Kühnlein, C., Walko, R., ... Skamarock, W. C. (2019). DCMIP2016: The splitting supercell test case. Geoscientific Model Development, 12(3), 879-892. https://doi.org/10.5194/gmd-12-879-2019