Deep learning of human visual sensitivity in image quality assessment framework

Jongyoo Kim, Sanghoon Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

55 Citations (Scopus)

Abstract

Since human observers are the ultimate receivers of digital images, image quality metrics should be designed from a human-oriented perspective. Conventionally, a number of full-reference image quality assessment (FR-IQA) methods adopted various computational models of the human visual system (HVS) from psychological vision science research. In this paper, we propose a novel convolutional neural networks (CNN) based FR-IQA model, named Deep Image Quality Assessment (DeepQA), where the behavior of the HVS is learned from the underlying data distribution of IQA databases. Different from previous studies, our model seeks the optimal visual weight based on understanding of database information itself without any prior knowledge of the HVS. Through the experiments, we show that the predicted visual sensitivity maps agree with the human subjective opinions. In addition, DeepQA achieves the state-of-the-art prediction accuracy among FR-IQA models.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1969-1977
Number of pages9
ISBN (Electronic)9781538604571
DOIs
Publication statusPublished - 2017 Nov 6
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 2017 Jul 212017 Jul 26

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Other

Other30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
CountryUnited States
CityHonolulu
Period17/7/2117/7/26

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Deep learning of human visual sensitivity in image quality assessment framework'. Together they form a unique fingerprint.

  • Cite this

    Kim, J., & Lee, S. (2017). Deep learning of human visual sensitivity in image quality assessment framework. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (pp. 1969-1977). (Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017; Vol. 2017-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CVPR.2017.213