Abstract
Incorporating spatio-temporal human visual perception into video quality assessment (VQA) remains a formidable issue. Previous statistical or computational models of spatio-temporal perception have limitations to be applied to the general VQA algorithms. In this paper, we propose a novel full-reference (FR) VQA framework named Deep Video Quality Assessor (DeepVQA) to quantify the spatio-temporal visual perception via a convolutional neural network (CNN) and a convolutional neural aggregation network (CNAN). Our framework enables to figure out the spatio-temporal sensitivity behavior through learning in accordance with the subjective score. In addition, to manipulate the temporal variation of distortions, we propose a novel temporal pooling method using an attention model. In the experiment, we show DeepVQA remarkably achieves the state-of-the-art prediction accuracy of more than 0.9 correlation, which is \sim 5% higher than those of conventional methods on the LIVE and CSIQ video databases.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings |
Editors | Martial Hebert, Vittorio Ferrari, Cristian Sminchisescu, Yair Weiss |
Publisher | Springer Verlag |
Pages | 224-241 |
Number of pages | 18 |
ISBN (Print) | 9783030012458 |
DOIs | |
Publication status | Published - 2018 |
Event | 15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany Duration: 2018 Sept 8 → 2018 Sept 14 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11205 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Other
Other | 15th European Conference on Computer Vision, ECCV 2018 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 18/9/8 → 18/9/14 |
Bibliographical note
Funding Information:This work was supported by Institute for Information & communications Technology Promotion through the Korea Government (MSIP) (No. 2016-0-00204, Development of mobile GPU hardware for photo-realistic real-time virtual reality).
Funding Information:
Acknowledgment. This work was supported by Institute for Information & communications Technology Promotion through the Korea Government (MSIP) (No. 2016-0-00204, Development of mobile GPU hardware for photo-realistic real-time virtual reality).
Publisher Copyright:
© 2018, Springer Nature Switzerland AG.
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Computer Science(all)