Defect Dominated Hierarchical Ti-Metal-Organic Frameworks via a Linker Competitive Coordination Strategy for Toluene Removal

Jie Jin, Ping Li, Do Hyung Chun, Bingjun Jin, Kan Zhang, Jong Hyeok Park

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

Constructing a hierarchically porous structure in metal–organic frameworks (MOFs) can improve the accessibility of active sites and facilitate mass diffusion to enhance their adsorption and catalytic efficiency. Here, a novel linker competitive coordination strategy based on the electronegativity difference of two kinds of organic linkers is proposed to tailor the porous structure of Ti-MOF (MIL-125). A series of Ti-MOFs with continuously tunable hierarchical porosity is obtained by simply adjusting the molar ratios of two organic linkers. The demonstration of toluene removal shows that the competitive coordination strategy not only contributes to wide pore size distribution to enhance the adsorption performance of toluene, but also endows good charge separation ability to facilitate photocatalytic performance. Finally, the toluene removal efficiency of optimal Ti-MOF with mixed organic linkers of 1:1 molar ratio is 2.14 times and 1.88 times of the pristine MIL-125 and MIL-125(NH2), respectively. This strategy opens a new prospect to optimize Ti-MOF properties for various heterogeneous catalysis applications.

Original languageEnglish
Article number2102511
JournalAdvanced Functional Materials
Volume31
Issue number32
DOIs
Publication statusPublished - 2021 Aug 9

Bibliographical note

Funding Information:
J.J. and P.L. contributed equally to this work. This work was supported by NRF Korea (NRF‐2019R1A2C3010479, 2019M1A2A2065612, 2019M3E6A1064525, 2019R1A4A1029237, 2017M3A7B4041987).

Funding Information:
J.J. and P.L. contributed equally to this work. This work was supported by NRF Korea (NRF-2019R1A2C3010479, 2019M1A2A2065612, 2019M3E6A1064525, 2019R1A4A1029237, 2017M3A7B4041987).

Publisher Copyright:
© 2021 Wiley-VCH GmbH

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Defect Dominated Hierarchical Ti-Metal-Organic Frameworks via a Linker Competitive Coordination Strategy for Toluene Removal'. Together they form a unique fingerprint.

Cite this