Abstract
We have demonstrated a batch-fabricated inertial microswitch with extended contact time using carbon nanotube (CNT)-contact pads. Self-assembled and aligned CNT bundles, as deformable electromechanical contact pads are selectively synthesized on fully fabricated single crystal silicon microstructures. Outstanding mechanical flexibility and resilience, as well as electrical conductivity of CNTs, make them suitable as an electromechanical contact material. It is experimentally verified that the elastic deformation of CNTs dramatically enhances the contact time of the inertial microswitch from 7.5 μs to 114 μs. Due to the prolonged contact time, the presented inertial microswitch provides reliable and easy detection of threshold acceleration, which is crucial in diverse commercial applications such as airbag restraint systems in vehicles or geriatric healthcare systems.
Original language | English |
---|---|
Article number | 5977025 |
Pages (from-to) | 4914-4920 |
Number of pages | 7 |
Journal | IEEE Transactions on Industrial Electronics |
Volume | 59 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2012 |
Bibliographical note
Funding Information:Manuscript received February 25, 2011; revised June 6, 2011; accepted July 16, 2011. Date of publication August 8, 2011; date of current version July 2, 2012. This work was supported by the Fusion Research Program for Green Technologies (2010-0019088) and the Basic Science Research Program (2011-0002585) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, and the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Government Ministry of Knowledge Economy (2008-N-PV08-P-06-0-000).
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Electrical and Electronic Engineering