### Abstract

In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λ_{n}, where a packet should be delivered to the destination within D(λ_{n}) seconds using at most E(λ_{n}) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., CεD(λ_{n}), E(λ_{n})), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by θ(λ_{n}/log λ_{n}) the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as θ(D(λ_{n})); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λ_{s}=ω(min(λ_{n}/log λ_{n},d(λ_{n}))).

Original language | English |
---|---|

Article number | 6805635 |

Pages (from-to) | 4495-4506 |

Number of pages | 12 |

Journal | IEEE Transactions on Wireless Communications |

Volume | 13 |

Issue number | 8 |

DOIs | |

Publication status | Published - 2014 Jan 1 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Computer Science Applications
- Electrical and Electronic Engineering
- Applied Mathematics

### Cite this

*IEEE Transactions on Wireless Communications*,

*13*(8), 4495-4506. [6805635]. https://doi.org/10.1109/TWC.2014.2320253

}

*IEEE Transactions on Wireless Communications*, vol. 13, no. 8, 6805635, pp. 4495-4506. https://doi.org/10.1109/TWC.2014.2320253

**Delay and energy constrained random access transport capacity.** / Byun, Ilmu; Ko, Byung Hoon; Jeon, Ki Jun; Kim, Kwang Soon.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Delay and energy constrained random access transport capacity

AU - Byun, Ilmu

AU - Ko, Byung Hoon

AU - Jeon, Ki Jun

AU - Kim, Kwang Soon

PY - 2014/1/1

Y1 - 2014/1/1

N2 - In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λn, where a packet should be delivered to the destination within D(λn) seconds using at most E(λn) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., CεD(λn), E(λn)), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by θ(λn/log λn) the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as θ(D(λn)); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λs=ω(min(λn/log λn,d(λn))).

AB - In this paper, we consider a delay and energy constrained wireless ad hoc network with node density of λn, where a packet should be delivered to the destination within D(λn) seconds using at most E(λn) energy in joules while satisfying the target outage probability. The performance metric for analyzing the network is the delay and energy constrained random access transport capacity (DE-RATC), i.e., CεD(λn), E(λn)), which quantifies the maximum end-to-end distance weighted rate per unit area of a delay and energy constrained network using a random access protocol. It is shown that a slotted ALOHA protocol is order-optimal under any delay and energy constraints if equipped with additional features such as power control, multi-hop control, interference control, and rate control, and the delay and energy constraints can be divided into three regions according to the relation between the physical quantities due to the constraints and those due to the node density and network size. The three regions are the non-constrained (NC) region, where the DE-RATC is given by θ(λn/log λn) the delay-constrained (DC) region, where the DE-RATC depends only on the delay constraint as θ(D(λn)); and the non-achievable (NA) region where a packet delivery under the given constraints is impossible. Also, it is shown that an arbitrary tradeoff between the rate of each source node and the number of source nodes can be achieved while keeping the optimal capacity scaling as long as λs=ω(min(λn/log λn,d(λn))).

UR - http://www.scopus.com/inward/record.url?scp=84906282686&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84906282686&partnerID=8YFLogxK

U2 - 10.1109/TWC.2014.2320253

DO - 10.1109/TWC.2014.2320253

M3 - Article

VL - 13

SP - 4495

EP - 4506

JO - IEEE Transactions on Wireless Communications

JF - IEEE Transactions on Wireless Communications

SN - 1536-1276

IS - 8

M1 - 6805635

ER -