Abstract
The Telescope Array (TA) observatory utilizes fluorescence detectors and surface detectors (SDs) to observe air showers produced by ultra high energy cosmic rays in Earth's atmosphere. Cosmic-ray events observed in this way are termed hybrid data. The depth of air shower maximum is related to the mass of the primary particle that generates the shower. This paper reports on shower maxima data collected over 8.5 yr using the Black Rock Mesa and Long Ridge fluorescence detectors in conjunction with the array of SDs. We compare the means and standard deviations of the observed Xmax distributions with Monte Carlo Xmax distributions of unmixed protons, helium, nitrogen, and iron, all generated using the QGSJet II-04 hadronic model. We also perform an unbinned maximum likelihood test of the observed data, which is subjected to variable systematic shifting of the data Xmax distributions to allow us to test the full distributions, and compare them to the Monte Carlo to see which elements are not compatible with the observed data. For all energy bins, QGSJet II-04 protons are found to be compatible with TA hybrid data at the 95% confidence level after some systematic Xmax shifting of the data. Three other QGSJet II-04 elements are found to be compatible using the same test procedure in an energy range limited to the highest energies where data statistics are sparse.
Original language | English |
---|---|
Article number | 76 |
Journal | Astrophysical Journal |
Volume | 858 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2018 May 10 |
Bibliographical note
Funding Information:The Telescope Array experiment is supported by the Japan Society for the Promotion of Science (JSPS) through Grants-in-Aid for Priority Area 431, for Specially Promoted Research JP21000002, for Scientific Research (S) JP19104006, for Specially Promoted Research JP15H05693, for Scientific Research (S) JP15H05741, and for Young Scientists (A) JPH26707011; by the joint research program of the Institute for Cosmic Ray Research (ICRR), The University of Tokyo; by the U.S. National Science Foundation awards PHY-0601915, PHY-1404495, PHY-1404502, and PHY-1607727; by the National Research Foundation of Korea (2015R1A2A1A01006870, 2015R1A2A1A15055344, 2016R1A5A1013277, 2016R1A2B4 014967, 2017R1A2A1A05071429); by the Russian Academy of Sciences, RFBR grant 16-02-00962a (INR), IISN project No. 4.4502.13; and by Belgian Science Policy under IUAP VII/37 (ULB). The foundations of Dr. Ezekiel R. and Edna Wattis Dumke, Willard L. Eccles, and George S. and Dolores Doré Eccles all helped with generous donations. The State of Utah supported the project through its Economic Development Board, and the University of Utah through the Office of the Vice President for Research. The experimental site became available through the cooperation of the Utah School and Institutional Trust Lands Administration (SITLA), U.S. Bureau of Land Management (BLM), and the U.S. Air Force. We appreciate the assistance of the State of Utah and Fillmore offices of the BLM in crafting the Plan of Development for the site. Patrick Shea assisted the collaboration with valuable advice on a variety of topics. The people and the officials of Millard County, Utah, have been a source of steadfast and warm support for our work, which we greatly appreciate. We are indebted to the Millard County Road Department for their efforts to maintain and clear the roads that get us to our sites. We gratefully acknowledge the contribution from the technical staffs of our home institutions. An allocation of computer time from the Center for High Performance Computing at the University of Utah is gratefully acknowledged.
Publisher Copyright:
© 2018. The American Astronomical Society. All rights reserved.
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science