Determination of the kink point in the bilinear softening model for concrete

Kyoungsoo Park, Glaucio H. Paulino, Jeffery R. Roesler

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

The characterization of the softening curve from experimental results is essential for predicting the fracture behavior of quasi-brittle materials like concrete. Among various shapes (e.g. linear, exponential) to describe the softening behavior of concrete, the bilinear softening relationship has been extensively used and is the model of choice in this work. Currently, there is no consensus about the location of the kink point in the bilinear softening curve. In this study, the location of the kink point is proposed to be the stress at the critical crack tip opening displacement. Experimentally, the fracture parameters required to describe the bilinear softening curve can be determined with the "two-parameter fracture model" and the total work of fracture method based on a single concrete fracture test. The proposed location of the kink point compares well with the range of kink point locations reported in the literature, and is verified by plotting stress profiles along the expected fracture line obtained from numerical simulations with the cohesive zone model. Finally, prediction of experimental load versus crack mouth opening displacement curves validate the proposed location of the kink point for different concrete mixtures and also for geometrically similar specimens with the same concrete mixture. The experiments were performed on three-point bending specimens with concrete mixtures containing virgin coarse aggregate, recycled concrete coarse aggregate (RCA), and a 50-50 blend of RCA and virgin coarse aggregate. The verification and validation studies support the hypothesis of the kink point occurring at the critical crack tip opening displacement.

Original languageEnglish
Pages (from-to)3806-3818
Number of pages13
JournalEngineering Fracture Mechanics
Volume75
Issue number13
DOIs
Publication statusPublished - 2008 Sep 1

Fingerprint

Concretes
Concrete mixtures
Concrete aggregates
Crack tips
Brittleness
Cracks
Computer simulation
Experiments

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Park, Kyoungsoo ; Paulino, Glaucio H. ; Roesler, Jeffery R. / Determination of the kink point in the bilinear softening model for concrete. In: Engineering Fracture Mechanics. 2008 ; Vol. 75, No. 13. pp. 3806-3818.
@article{9ae2cf43c8b549768596b0c1225d3a08,
title = "Determination of the kink point in the bilinear softening model for concrete",
abstract = "The characterization of the softening curve from experimental results is essential for predicting the fracture behavior of quasi-brittle materials like concrete. Among various shapes (e.g. linear, exponential) to describe the softening behavior of concrete, the bilinear softening relationship has been extensively used and is the model of choice in this work. Currently, there is no consensus about the location of the kink point in the bilinear softening curve. In this study, the location of the kink point is proposed to be the stress at the critical crack tip opening displacement. Experimentally, the fracture parameters required to describe the bilinear softening curve can be determined with the {"}two-parameter fracture model{"} and the total work of fracture method based on a single concrete fracture test. The proposed location of the kink point compares well with the range of kink point locations reported in the literature, and is verified by plotting stress profiles along the expected fracture line obtained from numerical simulations with the cohesive zone model. Finally, prediction of experimental load versus crack mouth opening displacement curves validate the proposed location of the kink point for different concrete mixtures and also for geometrically similar specimens with the same concrete mixture. The experiments were performed on three-point bending specimens with concrete mixtures containing virgin coarse aggregate, recycled concrete coarse aggregate (RCA), and a 50-50 blend of RCA and virgin coarse aggregate. The verification and validation studies support the hypothesis of the kink point occurring at the critical crack tip opening displacement.",
author = "Kyoungsoo Park and Paulino, {Glaucio H.} and Roesler, {Jeffery R.}",
year = "2008",
month = "9",
day = "1",
doi = "10.1016/j.engfracmech.2008.02.002",
language = "English",
volume = "75",
pages = "3806--3818",
journal = "Engineering Fracture Mechanics",
issn = "0013-7944",
publisher = "Elsevier BV",
number = "13",

}

Determination of the kink point in the bilinear softening model for concrete. / Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery R.

In: Engineering Fracture Mechanics, Vol. 75, No. 13, 01.09.2008, p. 3806-3818.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Determination of the kink point in the bilinear softening model for concrete

AU - Park, Kyoungsoo

AU - Paulino, Glaucio H.

AU - Roesler, Jeffery R.

PY - 2008/9/1

Y1 - 2008/9/1

N2 - The characterization of the softening curve from experimental results is essential for predicting the fracture behavior of quasi-brittle materials like concrete. Among various shapes (e.g. linear, exponential) to describe the softening behavior of concrete, the bilinear softening relationship has been extensively used and is the model of choice in this work. Currently, there is no consensus about the location of the kink point in the bilinear softening curve. In this study, the location of the kink point is proposed to be the stress at the critical crack tip opening displacement. Experimentally, the fracture parameters required to describe the bilinear softening curve can be determined with the "two-parameter fracture model" and the total work of fracture method based on a single concrete fracture test. The proposed location of the kink point compares well with the range of kink point locations reported in the literature, and is verified by plotting stress profiles along the expected fracture line obtained from numerical simulations with the cohesive zone model. Finally, prediction of experimental load versus crack mouth opening displacement curves validate the proposed location of the kink point for different concrete mixtures and also for geometrically similar specimens with the same concrete mixture. The experiments were performed on three-point bending specimens with concrete mixtures containing virgin coarse aggregate, recycled concrete coarse aggregate (RCA), and a 50-50 blend of RCA and virgin coarse aggregate. The verification and validation studies support the hypothesis of the kink point occurring at the critical crack tip opening displacement.

AB - The characterization of the softening curve from experimental results is essential for predicting the fracture behavior of quasi-brittle materials like concrete. Among various shapes (e.g. linear, exponential) to describe the softening behavior of concrete, the bilinear softening relationship has been extensively used and is the model of choice in this work. Currently, there is no consensus about the location of the kink point in the bilinear softening curve. In this study, the location of the kink point is proposed to be the stress at the critical crack tip opening displacement. Experimentally, the fracture parameters required to describe the bilinear softening curve can be determined with the "two-parameter fracture model" and the total work of fracture method based on a single concrete fracture test. The proposed location of the kink point compares well with the range of kink point locations reported in the literature, and is verified by plotting stress profiles along the expected fracture line obtained from numerical simulations with the cohesive zone model. Finally, prediction of experimental load versus crack mouth opening displacement curves validate the proposed location of the kink point for different concrete mixtures and also for geometrically similar specimens with the same concrete mixture. The experiments were performed on three-point bending specimens with concrete mixtures containing virgin coarse aggregate, recycled concrete coarse aggregate (RCA), and a 50-50 blend of RCA and virgin coarse aggregate. The verification and validation studies support the hypothesis of the kink point occurring at the critical crack tip opening displacement.

UR - http://www.scopus.com/inward/record.url?scp=44449168465&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=44449168465&partnerID=8YFLogxK

U2 - 10.1016/j.engfracmech.2008.02.002

DO - 10.1016/j.engfracmech.2008.02.002

M3 - Article

AN - SCOPUS:44449168465

VL - 75

SP - 3806

EP - 3818

JO - Engineering Fracture Mechanics

JF - Engineering Fracture Mechanics

SN - 0013-7944

IS - 13

ER -