Determining adaptability performance of artificial neural network-based thermal control logics for envelope conditions in residential buildings

Jin Woo Moon, Jae D. Chang, Sooyoung Kim

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

This study examines the performance and adaptability of Artificial Neural Network (ANN)-based thermal control strategies for diverse thermal properties of building envelope conditions applied to residential buildings. The thermal performance using two non-ANN-based control logics and two predictive ANN-based control logics was numerically tested using simulation software after validation. The performance tests were conducted for a two-story single-family house for various envelope insulation levels and window-to-wall ratios on the envelopes. The percentages of the period within the targeted ranges for air temperature, humidity and PMV, and the magnitudes of the overshoots and undershoots outside of the targeted comfort range were analyzed for each control logic scheme. The results revealed that the two predictive control logics that employed thermal predictions of the ANN models achieved longer periods of thermal comfort than the non-ANN-based models in terms of the comfort periods and the reductions of the magnitudes of the overshoots and undershoots. The ANN-based models proved their adaptability through accurate control of the thermal conditions in buildings with various architectural variables. The ANN-based predictive control methods demonstrated their potential to create more comfortable thermal conditions in single-family homes compared to non-ANN based control logics.

Original languageEnglish
Pages (from-to)3548-3570
Number of pages23
JournalEnergies
Volume6
Issue number7
DOIs
Publication statusPublished - 2013

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Determining adaptability performance of artificial neural network-based thermal control logics for envelope conditions in residential buildings'. Together they form a unique fingerprint.

  • Cite this