TY - JOUR
T1 - Development of a biodegradable sirolimus-eluting stent coated by ultrasonic atomizing spray
AU - Kim, Soon Joong
AU - Park, Jae Geun
AU - Kim, Jung Ho
AU - Heo, Jung Sun
AU - Choi, Jeong Woo
AU - Jang, Yang Soo
AU - Yoon, Junghan
AU - Lee, Seung Jin
AU - Kwon, Il Keun
PY - 2011/7
Y1 - 2011/7
N2 - In this study, poly(D,L lactic-co-glycolic acid) (PLGA) was used as a drug carrier to generate two types of stents loaded with different concentrations of sirolimus. These stents were prepared by ultrasonic atomizing spray coating. Ultrasonic atomizing spray nozzle uses a low-pressure air/gas to produce a soft, highly focused beam of small spray drops. An isolated hypotube delivers liquid to the nozzle's atomizing surface while air/gas, delivered through the nozzle orifice at a fixed low pressure, shapes the atomized drops into a very precise, targeted spray. The stent was moved both in the traverse direction and rotated during the spraying process. The morphology of the sirolimus-eluting stents was examined by scanning electron microscopy (SEM) which indicated that the coating was very smooth and uniform. The coating was found to have the ability to withstand the compressive and tensile strains imparted without cracking during the stent inflation process. Release profile of sirolimus was measured by high performance liquid chromatography (HPLC). The release behavior of sirolimus from the stent surface had a two phase release profile with a burst release period of about 2 days, followed by a sustained and slow release phase. The mass loss behavior of PLGA appeared linear throughout most of the degradation period. At 28 days, neointimal formation was found to be significantly decreased for both sirolimus-eluting stents as compared to bare-metal stents (BMS). Assessment of vascular healing revealed an absence of increased inflammation in both sirolimus-eluting stents. Inflammation is commonly observed in drug-eluting stents (DES) with nonbiodegradable polymeric coatings. Taking these results into account, these novel sirolimus-eluting stents may be good candidates to resolve in-stent restenosis.
AB - In this study, poly(D,L lactic-co-glycolic acid) (PLGA) was used as a drug carrier to generate two types of stents loaded with different concentrations of sirolimus. These stents were prepared by ultrasonic atomizing spray coating. Ultrasonic atomizing spray nozzle uses a low-pressure air/gas to produce a soft, highly focused beam of small spray drops. An isolated hypotube delivers liquid to the nozzle's atomizing surface while air/gas, delivered through the nozzle orifice at a fixed low pressure, shapes the atomized drops into a very precise, targeted spray. The stent was moved both in the traverse direction and rotated during the spraying process. The morphology of the sirolimus-eluting stents was examined by scanning electron microscopy (SEM) which indicated that the coating was very smooth and uniform. The coating was found to have the ability to withstand the compressive and tensile strains imparted without cracking during the stent inflation process. Release profile of sirolimus was measured by high performance liquid chromatography (HPLC). The release behavior of sirolimus from the stent surface had a two phase release profile with a burst release period of about 2 days, followed by a sustained and slow release phase. The mass loss behavior of PLGA appeared linear throughout most of the degradation period. At 28 days, neointimal formation was found to be significantly decreased for both sirolimus-eluting stents as compared to bare-metal stents (BMS). Assessment of vascular healing revealed an absence of increased inflammation in both sirolimus-eluting stents. Inflammation is commonly observed in drug-eluting stents (DES) with nonbiodegradable polymeric coatings. Taking these results into account, these novel sirolimus-eluting stents may be good candidates to resolve in-stent restenosis.
UR - http://www.scopus.com/inward/record.url?scp=84855394320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855394320&partnerID=8YFLogxK
U2 - 10.1166/jnn.2011.4496
DO - 10.1166/jnn.2011.4496
M3 - Article
C2 - 22121592
AN - SCOPUS:84855394320
VL - 11
SP - 5689
EP - 5697
JO - Journal of Nanoscience and Nanotechnology
JF - Journal of Nanoscience and Nanotechnology
SN - 1533-4880
IS - 7
ER -