Development of an innovative data-driven system to generate descriptive prediction equation of dielectric constant on small sample sets

Jiashun Mao, Amir Zeb, Min Sung Kim, Hyeon Nae Jeon, Jianmin Wang, Shenghui Guan, Kyoung Tai NO

Research output: Contribution to journalArticlepeer-review

Abstract

Dielectric constant (DC, ε) is a fundamental parameter in material sciences to measure polarizability of the system. In industrial processes, its value is an imperative indicator, which demonstrates the dielectric property of material and compiles information including separation information, chemical equilibrium, chemical reactivity analysis, and solubility modeling. Since, the available ε-prediction models are fairly primitive and frequently suffer from serious failures especially when deals with strong polar compounds. Therefore, we have developed a novel data-driven system to improve the efficiency and wide-range applicability of ε using in material sciences. This innovative scheme adopts the correlation distance and genetic algorithm to discriminate features’ combination and avoid overfitting. Herein, the prediction output of the single ML model as a coding to estimate the target value by simulating the layer-by-layer extraction in deep learning, and enabling instant search for the optimal combination of features is recruited. Our model established an improved correlation value of 0.956 with target as compared to the previously available best traditional ML result of 0.877. Our framework established a profound improvement, especially for material systems possessing ε value >50. In terms of interpretability, we have derived a conceptual computational equation from a minimum generating tree. Our innovative data-driven system is preferentially superior over other methods due to its application for the prediction of dielectric constants as well as for the prediction of overall micro and macro-properties of any multi-components complex.

Original languageEnglish
Article numbere10011
JournalHeliyon
Volume8
Issue number8
DOIs
Publication statusPublished - 2022 Aug

Bibliographical note

Funding Information:
This work was supported by Yonsei University graduate school "Integrative Biotechnology & Translational Medicine".

Publisher Copyright:
© 2022 The Author(s)

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Development of an innovative data-driven system to generate descriptive prediction equation of dielectric constant on small sample sets'. Together they form a unique fingerprint.

Cite this