Abstract
As diagnostic biosensors for analyzing fluids from the human body, the development of inorganic NPs is of increasing concern. For one, nanoceramic phosphors have been studied to meet the increasing requirements for biological, imaging, and diagnostic applications. In this study, Y2O3 NPs co-doped with trivalent rare earths (erbium and ytterbium) were obtained using a liquid phase–pulsed laser ablation (LP–PLA) method after getting high density Er, Yb:Y2O3 ceramic targets by Spark plasma sintering (SPS). Most NPs are under 50 nm in diameter and show high crystallinity of cubic Y2O3 structure, containing (222), (440), and (332) planes via HR–TEM. Excitation under a 980 nm laser to a nanoparticle solution showed 525 and 565 nm green, and 660 nm red emissions. The green emission intensity increased and decreased with increasing Yb3+ additive concentration, when the red spectrum continuously strengthened. Utilizing this study’s outcome, we suggest developing technology to mark invisible biomolecules dissolved in a solvent using UC luminescence of Er3+, Yb3+ co-doped Y2O3 NPs by LP–PLA. The LP–PLA method has a potential ability for the fabrication of UC NPs for biosensors with uniform size distribution by laser parameters.
Original language | English |
---|---|
Article number | 150 |
Journal | Biosensors |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2021 May |
Bibliographical note
Funding Information:Funding: This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: HI19C1334).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Instrumentation
- Engineering (miscellaneous)
- Biotechnology
- Biomedical Engineering
- Clinical Biochemistry