Abstract
In this study, we develop an in vivo dielectric imaging technique that measures capacitance using pin-type electrode arrays. Compared to normal tissues, cancer tissues exhibit higher capacitance values, allowing us to image the cancer region and monitor the chemotherapeutic effects of cancer in real-time. A comparison with the histopathological results shows that the in vivo dielectric imaging technique is able to detect small tumors (<3 mm) and tumor-associated changes. In addition, we demonstrate that cancer and inflammation may be distinguished by measuring the capacitance images at different frequencies. In contrast, the positron emission tomography using 2-[18F]-fluoro-2-deoxy-D-glucose was not capable of discriminating between cancer and inflammation.
Original language | English |
---|---|
Article number | 13137 |
Journal | Scientific reports |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2017 Dec 1 |
Bibliographical note
Funding Information:This work was financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science (Grant Nos. NRF-2016R1A2B3011980, NRF-2016R1A2B4014999, NRF-2012R1A4A10209061, NRF-2014R1A4A1008625, and 2017R1A2B3006704), and Brain Korea 21 PLUS project for Medical Science.
Publisher Copyright:
© 2017 The Author(s).
All Science Journal Classification (ASJC) codes
- General