Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces

Ju Han Kim, Dae Young Lee, Jungho Hwang, Hyo Il Jung

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Bacterial cells were patterned efficiently on a nutrient-coated membrane in a direct, rapid, and cost-effective manner using electro-hydrodynamically generated micro-droplets. By varying the viscosity and electrical conductivity of the bacterial printing solution, uniform droplets were obtained. Escherichia coli cells were directly printed onto a membrane filter, followed by overnight incubation on an agar plate which created line patterns of bacterial colonies with a width of approximately 160 μm. Optimization of the concentration of the chemical components [i.e. the ethylene glycol (EG), phosphate buffer (PB), and sodium chloride (NaCl)] in the processing bacterial solution allowed successful growth and patterning of the cells. The optimal conditions to achieve the most effective cell growth and patterning on these printed surfaces were an EG concentration of 40 vol% and a concentration as low as 10 mM of PB or NaCl in the printing solution. Cells passing through the electric nozzle during the printing process remained viable.

Original languageEnglish
Pages (from-to)829-839
Number of pages11
JournalMicrofluidics and Nanofluidics
Volume7
Issue number6
DOIs
Publication statusPublished - 2009 Dec

Bibliographical note

Funding Information:
Acknowledgments This work was supported by a grant from the Korea Research Foundation Grant (KRF-2006-331-D00040) funded by the Korean Government (MOEHRD), a grant from the ICBIN of the Seoul R&BD program (Grant no. 10816), and a grant from the National Core Research Center (NCRC) for Nanomedical Technology of the Korea Science & Engineering Foundation (Grant no. R15-2004-024-01001-0).

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces'. Together they form a unique fingerprint.

Cite this