TY - JOUR
T1 - Direct-patternable SnO2 thin films incorporated with conducting nanostructure materials
AU - Kim, Hyuncheol
AU - Park, Hyung Ho
PY - 2010
Y1 - 2010
N2 - There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable SnO2 thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable SnO2 thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the SnO2 thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of SnO2 thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized SnO2 thin films showed a relation between band structural change and electrical resistance. Direct-patterning of SnO2 hybrid films with a line-width of 30 μm was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of SnO2 films can be improved by incorporating Ag nanoparticles and MWNTs.
AB - There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable SnO2 thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable SnO2 thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the SnO2 thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of SnO2 thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized SnO2 thin films showed a relation between band structural change and electrical resistance. Direct-patterning of SnO2 hybrid films with a line-width of 30 μm was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of SnO2 films can be improved by incorporating Ag nanoparticles and MWNTs.
UR - http://www.scopus.com/inward/record.url?scp=78649721504&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649721504&partnerID=8YFLogxK
U2 - 10.3740/MRSK.2010.20.10.513
DO - 10.3740/MRSK.2010.20.10.513
M3 - Article
AN - SCOPUS:78649721504
VL - 20
SP - 513
EP - 517
JO - Korean Journal of Materials Research
JF - Korean Journal of Materials Research
SN - 1225-0562
IS - 10
ER -