Direct photo-patterning on anthracene containing polymer for guiding stem cell adhesion

Jungmok You, June Seok Heo, Hyun Ok Kim, Eunkyoung Kim

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Background: Various micropatterned surfaces capable of guiding the selective adhesion of biomolecules such as proteins and cells are of great interests in biosensor, diagnostics, drug screening, and tissue engineering. In this study, we described a simple photo-patterning method to prepare micro-patterned films for stem cell patterning using anthracene containing polymers (PMAn). This micro patterned polymer film was prepared by the facile photo-reaction of anthracene units in polymer backbone structure. Results: The UV irradiation of PMAn through a photomask resulted in the quenching of fluorescent intensity as well as the changes in surface wettability from hydrophobic to hydrophilic surface. As a result, UV exposed regions of PMAn film show lower fluorescent intensity as well as higher proliferation rate of mesenchymal stem cells (MSCs) than unexposed region of PMAn film. Furthermore, the selective MSC attachment was clearly observed in the UV exposed regions of PMAn film. Conclusion: We developed a simple cell patterning method with a fluorescent, biocompatible, and patternable polymer film containing anthracene units. This method provides a facile stem cell patterning method and could be extended to various patterning of biomaterials without labor-intensive preparation and no pre-treatment for complex interactions of cell-microenvironment.

Original languageEnglish
Article number26
JournalBiomaterials Research
Volume20
Issue number1
DOIs
Publication statusPublished - 2016

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRT) grant funded by the Korea government (MSIP) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health Welfare, Republic Korea. This work was supported by the National Research Foundation of Korea (NRT) grant funded by the Korea government (MSIP) (No. 2015R1C1A1A01054258) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic Korea (No. HI15C0942).

Publisher Copyright:
© 2016 The Author(s).

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Direct photo-patterning on anthracene containing polymer for guiding stem cell adhesion'. Together they form a unique fingerprint.

Cite this