Discrete cyclic porphyrin arrays as artificial light-harvesting antenna

Naoki Aratani, Dongho Kim, Atsuhiro Osuka

Research output: Contribution to journalArticle

375 Citations (Scopus)

Abstract

The importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of proteinembedded pigments initiates photosynthesis. Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-mesolinked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the Förster- type incoherent energy hopping model. In noncoordinating solvents such as CHCl3, meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated the rigorous homochiral self-sorting process and efficient EET along these cyclic porphyrin arrays. The meso-cinchomeronimide appended zinc(II) porphyrin forms a cyclic trimer. We have also shown that the corresponding meso-meso-linked diporphyrins undergo high-fidelity self-sorting assembling to form discrete cyclic trimer, tetramer, and pentamer with large association constants through perfect discrimination of enantiomeric and conformational differences of the meso-cinchomeronimide substituents. Collectively, these studies of covalently and noncovalently linked discrete cyclic porphyrin arrays aid in the understanding of the structural requirements for such very fast EET in natural lightharvesting complexes.

Original languageEnglish
Pages (from-to)1922-1934
Number of pages13
JournalAccounts of Chemical Research
Volume42
Issue number12
DOIs
Publication statusPublished - 2009 Dec 21

Fingerprint

Porphyrins
Antennas
Excitation energy
Light-Harvesting Protein Complexes
Energy transfer
Anisotropy
Photosynthesis
Fluorescence
Sorting
Pigments
Zinc
Photons
Silver
Dimers
Wheels
Crystal structure
Association reactions
Pumps
Polarization

All Science Journal Classification (ASJC) codes

  • Chemistry(all)

Cite this

Aratani, Naoki ; Kim, Dongho ; Osuka, Atsuhiro. / Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. In: Accounts of Chemical Research. 2009 ; Vol. 42, No. 12. pp. 1922-1934.
@article{64a93c25f95640a9adf6f6d7b09246aa,
title = "Discrete cyclic porphyrin arrays as artificial light-harvesting antenna",
abstract = "The importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of proteinembedded pigments initiates photosynthesis. Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-mesolinked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the F{\"o}rster- type incoherent energy hopping model. In noncoordinating solvents such as CHCl3, meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated the rigorous homochiral self-sorting process and efficient EET along these cyclic porphyrin arrays. The meso-cinchomeronimide appended zinc(II) porphyrin forms a cyclic trimer. We have also shown that the corresponding meso-meso-linked diporphyrins undergo high-fidelity self-sorting assembling to form discrete cyclic trimer, tetramer, and pentamer with large association constants through perfect discrimination of enantiomeric and conformational differences of the meso-cinchomeronimide substituents. Collectively, these studies of covalently and noncovalently linked discrete cyclic porphyrin arrays aid in the understanding of the structural requirements for such very fast EET in natural lightharvesting complexes.",
author = "Naoki Aratani and Dongho Kim and Atsuhiro Osuka",
year = "2009",
month = "12",
day = "21",
doi = "10.1021/ar9001697",
language = "English",
volume = "42",
pages = "1922--1934",
journal = "Accounts of Chemical Research",
issn = "0001-4842",
publisher = "American Chemical Society",
number = "12",

}

Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. / Aratani, Naoki; Kim, Dongho; Osuka, Atsuhiro.

In: Accounts of Chemical Research, Vol. 42, No. 12, 21.12.2009, p. 1922-1934.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Discrete cyclic porphyrin arrays as artificial light-harvesting antenna

AU - Aratani, Naoki

AU - Kim, Dongho

AU - Osuka, Atsuhiro

PY - 2009/12/21

Y1 - 2009/12/21

N2 - The importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of proteinembedded pigments initiates photosynthesis. Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-mesolinked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the Förster- type incoherent energy hopping model. In noncoordinating solvents such as CHCl3, meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated the rigorous homochiral self-sorting process and efficient EET along these cyclic porphyrin arrays. The meso-cinchomeronimide appended zinc(II) porphyrin forms a cyclic trimer. We have also shown that the corresponding meso-meso-linked diporphyrins undergo high-fidelity self-sorting assembling to form discrete cyclic trimer, tetramer, and pentamer with large association constants through perfect discrimination of enantiomeric and conformational differences of the meso-cinchomeronimide substituents. Collectively, these studies of covalently and noncovalently linked discrete cyclic porphyrin arrays aid in the understanding of the structural requirements for such very fast EET in natural lightharvesting complexes.

AB - The importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of proteinembedded pigments initiates photosynthesis. Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-mesolinked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the Förster- type incoherent energy hopping model. In noncoordinating solvents such as CHCl3, meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated the rigorous homochiral self-sorting process and efficient EET along these cyclic porphyrin arrays. The meso-cinchomeronimide appended zinc(II) porphyrin forms a cyclic trimer. We have also shown that the corresponding meso-meso-linked diporphyrins undergo high-fidelity self-sorting assembling to form discrete cyclic trimer, tetramer, and pentamer with large association constants through perfect discrimination of enantiomeric and conformational differences of the meso-cinchomeronimide substituents. Collectively, these studies of covalently and noncovalently linked discrete cyclic porphyrin arrays aid in the understanding of the structural requirements for such very fast EET in natural lightharvesting complexes.

UR - http://www.scopus.com/inward/record.url?scp=72949094187&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=72949094187&partnerID=8YFLogxK

U2 - 10.1021/ar9001697

DO - 10.1021/ar9001697

M3 - Article

C2 - 19842697

AN - SCOPUS:72949094187

VL - 42

SP - 1922

EP - 1934

JO - Accounts of Chemical Research

JF - Accounts of Chemical Research

SN - 0001-4842

IS - 12

ER -