Discriminative multi-level reconstruction under compact latent space for one-class novelty detection

Jaewoo Park, Yoon Gyo Jung, Andrew Beng Jin Teoh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

In one-class novelty detection, a model learns solely on the in-class data to single out out-class instances. Autoencoder (AE) variants aim to compactly model the in-class data to reconstruct it exclusively, thus differentiating the in-class from out-class by the reconstruction error. However, compact modeling in an improper way might collapse the latent representations of the in-class data and thus their reconstruction, which would lead to performance deterioration. Moreover, to properly measure the reconstruction error of high-dimensional data, a metric is required that captures high-level semantics of the data. To this end, we propose Discriminative Compact AE (DCAE) that learns both compact and collapse-free latent representations of the in-class data, thereby reconstructing them both finely and exclusively. In DCAE, (a) we force a compact latent space to bijectively represent the in-class data by reconstructing them through internal discriminative layers of generative adversarial nets. (b) Based on the deep encoder's vulnerability to open set risk, out-class instances are encoded into the same compact latent space and reconstructed poorly without sacrificing the quality of in-class data reconstruction. (c) In inference, the reconstruction error is measured by a novel metric that computes the dissimilarity between a query and its reconstruction based on the class semantics captured by the internal discriminator. Extensive experiments on public image datasets validate the effectiveness of our proposed model on both novelty and adversarial example detection, delivering state-of-the-art performance.

Original languageEnglish
Title of host publicationProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7095-7102
Number of pages8
ISBN (Electronic)9781728188089
DOIs
Publication statusPublished - 2020
Event25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
Duration: 2021 Jan 102021 Jan 15

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

Conference

Conference25th International Conference on Pattern Recognition, ICPR 2020
Country/TerritoryItaly
CityVirtual, Milan
Period21/1/1021/1/15

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NO. NRF-2019R1A2C1003306), and by NVIDIA GPU grant program.

Publisher Copyright:
© 2020 IEEE

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Discriminative multi-level reconstruction under compact latent space for one-class novelty detection'. Together they form a unique fingerprint.

Cite this