Distribution and characteristics of pyrolysis products from automobile shredder residue using an experimental semi-batch reactor

Hyun Tae Joung, Yong Chil Seo, Ki Heon Kim, John Hee Hong, Tae Wook Yoo

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Automobile shredder residue (ASR) generated by end-of-life vehicles, comprises more than 20% of a new vehicle by weight. Significant amounts of polymers in ASR, such as Poly Propylene (PP), Poly Ethylene (PE), Acrylonitrile Butadiene Styrene (ABS), Ethylene Propylene Ethylidene Nobomene (EPDM), rubber, Polyethylene Terephthalate (PET), Poly Amide (PA), and Poly Vinyl Chloride (PVC), can be used as energy or chemical sources, whereas other components, such as tires, rubber, glass, wood, sand/dust, and heavy metals inhibit the recycling of ASR. In many countries, landfill use of ASR is regulated, so landfill costs have increased, as has inappropriate disposal; sending ASR to landfills will be needed to be regulated in Korea. Pyrolysis has been suggested as an economically feasible recycling and recovery technique for ASR in Korea and other advanced countries. Before such technology is implemented, the characteristics of pyrolyzed products should be investigated. Shredded samples from the facility were collected, and calorific value, elemental analysis, and leaching tests were performed to determine ASR characteristics. Pyrolysis experiments were conducted at five different temperatures, 400, 500, 600, 700, and 800 °C, and the product distributions of gas, tar, and char were investigated. The optimal temperature for ASR pyrolysis, in terms of yield efficiency, was found to be 600 °C. The mean calorific value was also found to be higher in this case; thus, ASR can be treated as an auxiliary fuel. During pyrolysis, there were high ignition losses of light and heavy fluff, due to the presence of organic materials. The leaching concentrations of all tested heavy metals were found to be within the Korean guideline values. In terms of carbon number distributions, pyrolysis of ASR at 600 °C was optimal. For further utilization of pyrolysis products as fuel, the characteristics of char, oil, and gas were investigated with an experimental batch reactor.

Original languageEnglish
Pages (from-to)996-1002
Number of pages7
JournalKorean Journal of Chemical Engineering
Volume24
Issue number6
DOIs
Publication statusPublished - 2007 Nov

Bibliographical note

Funding Information:
This work was supported by the project of “ELV Recycling Technology for EU Directive Implementation” of the Project on Technology Development of Cleaner Production and the Brain Korea 21 Project in Korea.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Distribution and characteristics of pyrolysis products from automobile shredder residue using an experimental semi-batch reactor'. Together they form a unique fingerprint.

Cite this