Diversified texture synthesis with feed-forward networks

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, Ming Hsuan Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

44 Citations (Scopus)

Abstract

Recent progresses on deep discriminative and generative modeling have shown promising results on texture synthesis. However, existing feed-forward based methods trade off generality for efficiency, which suffer from many issues, such as shortage of generality (i.e., build one network per texture), lack of diversity (i.e., always produce visually identical output) and suboptimality (i.e., generate less satisfying visual effects). In this work, we focus on solving these issues for improved texture synthesis. We propose a deep generative feed-forward network which enables efficient synthesis of multiple textures within one single network and meaningful interpolation between them. Meanwhile, a suite of important techniques are introduced to achieve better convergence and diversity. With extensive experiments, we demonstrate the effectiveness of the proposed model and techniques for synthesizing a large number of textures and show its applications with the stylization.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages266-274
Number of pages9
ISBN (Electronic)9781538604571
DOIs
Publication statusPublished - 2017 Nov 6
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 2017 Jul 212017 Jul 26

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Other

Other30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
CountryUnited States
CityHonolulu
Period17/7/2117/7/26

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Computer Vision and Pattern Recognition

Cite this

Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., & Yang, M. H. (2017). Diversified texture synthesis with feed-forward networks. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (pp. 266-274). (Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017; Vol. 2017-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CVPR.2017.36