Abstract
A facile and scalable high-temperature molten salt method was used to synthesize a high-quality hierarchical carbon nanostructure consisting of graphene nanosheets and nanoscrolls with an interconnected network and high electrical conductivity. During the process, the intercalation of lithium and hydrogen from molten LiCl into graphite led to the formation of a coexisting graphene sheet-scroll nanostructure. An electrode using the fabricated interconnected carbon nanostructure showed a highly reversible specific capacitance of 213 F g-1 at 1 A g-1, excellent capacitance retention (84.5% of the initial specific capacitance (1 A g-1) at 50 A g-1), and good cyclability (97.9% after 10 000 cycles). Such remarkable electrochemical performance is desirable for supercapacitor/ultracapacitor applications.
Original language | English |
---|---|
Pages (from-to) | 2249-2256 |
Number of pages | 8 |
Journal | Energy and Environmental Science |
Volume | 9 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2016 Jul |
Bibliographical note
Funding Information:Graphene nanostructures were produced at University of Cambridge, and adopted for supercapacitor application at Yonsei University and Korea Institute of Ceramic Engineering & Technology. The electrochemical evaluation of graphene nanostructures was supported by an Energy Efficiency and Resources program grant of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Knowledge Economy, Korean government (No. 20122010100140), and also by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1A6A3A03018844).
Publisher Copyright:
© 2016 The Royal Society of Chemistry.
All Science Journal Classification (ASJC) codes
- Environmental Chemistry
- Renewable Energy, Sustainability and the Environment
- Nuclear Energy and Engineering
- Pollution