Abstract
We investigate the impact of ram pressure stripping due to the intracluster medium (ICM) on star-forming disk galaxies with a multiphase interstellar medium maintained by strong stellar feedback. We carry out radiation-hydrodynamic simulations of an isolated disk galaxy embedded in a 1011 M o˙ dark matter halo with various ICM winds mimicking the cluster outskirts (moderate) and the central environment (strong). We find that both star formation quenching and triggering occur in ram pressure-stripped galaxies, depending on the strength of the winds. H i and H2 in the outer galactic disk are significantly stripped in the presence of moderate winds, whereas turbulent pressure provides support against ram pressure in the central region, where star formation is active. Moderate ICM winds facilitate gas collapse, increasing the total star formation rates by ∼40% when the wind is oriented face-on or by ∼80% when it is edge-on. In contrast, strong winds rapidly blow away neutral and molecular hydrogen gas from the galaxy, suppressing star formation by a factor of 2 within ∼200 Myr. Dense gas clumps with n H ⪆ 10 M o˙ pc-2 are easily identified in extraplanar regions, but no significant young stellar populations are found in such clumps. In our attempts to enhance radiative cooling by adopting a colder ICM of T = 106 K, only a few additional stars are formed in the tail region, even if the amount of newly cooled gas increases by an order of magnitude.
Original language | English |
---|---|
Article number | 31 |
Journal | Astrophysical Journal |
Volume | 905 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2020 Dec 10 |
Bibliographical note
Publisher Copyright:© 2020. The American Astronomical Society. All rights reserved..
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science