Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives

Jung Gu Han, Eunbyul Hwang, Yoseph Kim, Sewon Park, Koeun Kim, Deok Ho Roh, Minsu Gu, Sang Ho Lee, Tae Hyuk Kwon, Youngjo Kim, Nam Soon Choi, Byeong Su Kim

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


Long-term stability of the solid electrolyte interphase (SEI) and cathode-electrolyte interface (CEI) layers formed on anodes and cathodes is imperative to mitigate the interfacial degradation of electrodes and enhance the cycle life of lithium-ion batteries (LIBs). However, the SEI on the anode and CEI on the cathode are vulnerable to the reactive species of PF5 and HF produced by the decomposition and hydrolysis of the conventional LiPF6 electrolyte in a battery inevitably containing a trace amount of water. Here, we report a new class of cyclic carbonate-based electrolyte additives to preserve the integrity of SEI and CEI in LIBs. This new class of additives is designed and synthesized by an ecofriendly approach that involves fixing CO2 with functional epoxides bearing various reactive side chains. It was found that the cyclic carbonates of 3-(1-ethoxyethoxy)-1,2-propylene carbonate and 3-trimethoxysilylpropyloxy-1,2-propylene carbonate, possessing high capability for the stabilization of Lewis-acidic PF5, exhibit a capacity retention of 79.0% after 1000 cycles, which is superior to that of the pristine electrolyte of 54.7%. Moreover, TMSPC has HF-scavenging capability, which, along with PF5 stabilization, results in enhanced rate capability of commercial LiNi0.6Mn0.2Co0.2O2 (NCM622)/graphite full cells, posing a significant potential for high-energy-density LIBs with long cycle stability.

Original languageEnglish
Pages (from-to)24479-24487
Number of pages9
JournalACS Applied Materials and Interfaces
Issue number21
Publication statusPublished - 2020 May 27

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF-2017R1A2B3012148, NRF-2017M3A7B4052802, and NRF-2018R1A2B6004037) and also by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2018M1A2A2063341).

Publisher Copyright:
© 2020 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)


Dive into the research topics of 'Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives'. Together they form a unique fingerprint.

Cite this