TY - JOUR
T1 - Dynamic change of mitral apparatus as potential cause of left ventricular outflow tract obstruction in hypertrophic cardiomyopathy
AU - Hwang, Hye Jin
AU - Choi, Eui Young
AU - Kwan, Jun
AU - Kim, Sung Ai
AU - Shim, Chi Young
AU - Ha, Jong Won
AU - Rim, Se Joong
AU - Chung, Namsik
AU - Kim, Sung Soon
PY - 2011/1
Y1 - 2011/1
N2 - Aims: The geometry of the mitral apparatus changes dynamically throughout systole and diastole. We investigated how geometric dynamics of the mitral apparatus could affect the haemodynamics of the outflow tract in patients with hypertrophic cardiomyopathy presenting with systolic anterior motion (HCMSAM) using three-dimensional (3D) echocardiography.Methods and resultsWe obtained transthoracic volumetric images in 21 patients with HCMSAM with differing trans-left ventricular (LV) outflow tract pressure gradient (PGLVOT) and in 23 controls. Original software was used to crop the 3D data into 18 radial planes; the mitral annulus, leaflets, coaptation point, protruding septum, and papillary muscles (PMs) tips were traced in each plane. The data were then reconstructed for 3D distance measurements and volumetric assessment. Shorter coaptation-septal distance (12 ± 4 vs. 21 ± 3 mm, P < 0.001), shorter inter-PM distance (13 ± 5 vs. 18 ± 4 mm, P 0.02), and larger mitral tenting volume/body surface area (TVindex) (2.1 ± 1 vs. 0.5 ± 0.3 mL/m2, P < 0.001) were associated with HCMSAM vs. control. PGLVOT increased with TVindex (r 0.51, P 0.01), and decreased with coaptation-septal distance(r -0.83, P < 0.001) and the inter-PM distance (r -0.69, P < 0.001) at mid-systole but not at mid-diastole (all P> 0.05). In addition, the coaptation-septal distance, TVindex, and inter-PM distance correlated each other (all P < 0.05). After adjustment for measures of mitral geometric change, the coaptation-septal distance was closely associated with PGLVOT (β -0.73, P < 0.001).ConclusionThese findings suggest that dynamic geometric changes by interaction of PMs, mitral tenting, and the coaptation point at mid-systole may be important contributors to outflow obstruction in HCMSAM.
AB - Aims: The geometry of the mitral apparatus changes dynamically throughout systole and diastole. We investigated how geometric dynamics of the mitral apparatus could affect the haemodynamics of the outflow tract in patients with hypertrophic cardiomyopathy presenting with systolic anterior motion (HCMSAM) using three-dimensional (3D) echocardiography.Methods and resultsWe obtained transthoracic volumetric images in 21 patients with HCMSAM with differing trans-left ventricular (LV) outflow tract pressure gradient (PGLVOT) and in 23 controls. Original software was used to crop the 3D data into 18 radial planes; the mitral annulus, leaflets, coaptation point, protruding septum, and papillary muscles (PMs) tips were traced in each plane. The data were then reconstructed for 3D distance measurements and volumetric assessment. Shorter coaptation-septal distance (12 ± 4 vs. 21 ± 3 mm, P < 0.001), shorter inter-PM distance (13 ± 5 vs. 18 ± 4 mm, P 0.02), and larger mitral tenting volume/body surface area (TVindex) (2.1 ± 1 vs. 0.5 ± 0.3 mL/m2, P < 0.001) were associated with HCMSAM vs. control. PGLVOT increased with TVindex (r 0.51, P 0.01), and decreased with coaptation-septal distance(r -0.83, P < 0.001) and the inter-PM distance (r -0.69, P < 0.001) at mid-systole but not at mid-diastole (all P> 0.05). In addition, the coaptation-septal distance, TVindex, and inter-PM distance correlated each other (all P < 0.05). After adjustment for measures of mitral geometric change, the coaptation-septal distance was closely associated with PGLVOT (β -0.73, P < 0.001).ConclusionThese findings suggest that dynamic geometric changes by interaction of PMs, mitral tenting, and the coaptation point at mid-systole may be important contributors to outflow obstruction in HCMSAM.
UR - http://www.scopus.com/inward/record.url?scp=78651370807&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78651370807&partnerID=8YFLogxK
U2 - 10.1093/ejechocard/jeq092
DO - 10.1093/ejechocard/jeq092
M3 - Article
C2 - 20693545
AN - SCOPUS:78651370807
VL - 12
SP - 19
EP - 25
JO - European Heart Journal Cardiovascular Imaging
JF - European Heart Journal Cardiovascular Imaging
SN - 2047-2404
IS - 1
ER -