TY - JOUR
T1 - Early Screening of oxacillin-resistant Staphylococcus aureus and Staphylococcus epidermidis from blood culture.
AU - Jeong, Joseph
AU - Chang, Chulhun Ludgerus
AU - Park, Tae Sung
AU - Lee, Seon Ho
AU - Kim, Sung Ryul
AU - Jeong, Seok Hoon
PY - 2002/4
Y1 - 2002/4
N2 - The timely detection of blood-borne pathogens is one of the most important functions of the microbiology laboratory. Recently, methicillin-resistant staphylococci have become the most important pathogens seen by the laboratory. The purpose of this study was to evaluate Staphy agar, a novel screening medium, for the detection methicillin-resistant Staphylococcus aureus, S. epidermidis, or other coagulase-negative staphylococci (CNS) from positive blood cultures showing Gram-positive cocci in clusters. Eighty-six blood cultures that yielded Gram-positive cocci in clusters were included in this study. The organisms were finally identified by the Vitek system, and oxacillin resistance was confirmed by polymerase chain reaction (PCR)-based mecA gene detection. The identification and oxacillin resistance of all S. aureus strains showed complete agreement with the Vitek and PCR results. The presumptive detection of S. epidermidis and other CNS were consistent with the Vitek system in 94.7%, and the screening of oxacillin resistance was consistent with the result of PCR in 92.1% of 38 strains. The Staphy agar method is reliable and rapid for differentiating Gram-positive cocci in clusters in blood and for determining their methicillin resistance.
AB - The timely detection of blood-borne pathogens is one of the most important functions of the microbiology laboratory. Recently, methicillin-resistant staphylococci have become the most important pathogens seen by the laboratory. The purpose of this study was to evaluate Staphy agar, a novel screening medium, for the detection methicillin-resistant Staphylococcus aureus, S. epidermidis, or other coagulase-negative staphylococci (CNS) from positive blood cultures showing Gram-positive cocci in clusters. Eighty-six blood cultures that yielded Gram-positive cocci in clusters were included in this study. The organisms were finally identified by the Vitek system, and oxacillin resistance was confirmed by polymerase chain reaction (PCR)-based mecA gene detection. The identification and oxacillin resistance of all S. aureus strains showed complete agreement with the Vitek and PCR results. The presumptive detection of S. epidermidis and other CNS were consistent with the Vitek system in 94.7%, and the screening of oxacillin resistance was consistent with the result of PCR in 92.1% of 38 strains. The Staphy agar method is reliable and rapid for differentiating Gram-positive cocci in clusters in blood and for determining their methicillin resistance.
UR - http://www.scopus.com/inward/record.url?scp=0036551173&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036551173&partnerID=8YFLogxK
U2 - 10.3346/jkms.2002.17.2.168
DO - 10.3346/jkms.2002.17.2.168
M3 - Article
C2 - 11961298
AN - SCOPUS:0036551173
VL - 17
SP - 168
EP - 172
JO - Journal of Korean Medical Science
JF - Journal of Korean Medical Science
SN - 1011-8934
IS - 2
ER -