Effect of accelerated corneal crosslinking combined with transepithelial photorefractive keratectomy on dynamic corneal response parameters and biomechanically corrected intraocular pressure measured with a dynamic Scheimpflug analyzer in healthy myopic patients

Hun Lee, Cynthia J. Roberts, Renato Ambrósio, Ahmed Elsheikh, David Sung Yong Kang, Tae im Kim

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Purpose To evaluate the effect of accelerated corneal crosslinking (CXL) combined with transepithelial photorefractive keratectomy (PRK) on changes in new dynamic corneal response parameters and the biomechanically corrected intraocular pressure (IOP) measured using a dynamic Scheimpflug analyzer (Corvis ST). Setting Yonsei University College of Medicine and Eyereum Eye Clinic, Seoul, South Korea. Design Retrospective case series. Methods Medical records of eyes of healthy myopic patients having transepithelial PRK or transepithelial PRK with CXL were examined. Main outcome variables were the biomechanically corrected IOP and new dynamic corneal response parameters including the deformation amplitude ratio at 1.0 mm (DAR1) and at 2.0 mm (DAR2), stiffness at first applanation and at highest concavity, and the integrated inverse radius preoperatively and 6 months postoperatively. Results The study comprised 69 eyes (69 patients); 35 had transepithelial PRK and 34, transepithelial PRK with CXL. The DAR1, DAR2, and integrated inverse radius significantly increased, while stiffness at first applanation and at highest concavity decreased postoperatively in both groups. Changes in the DAR2 and integrated inverse radius in the transepithelial PRK group were significantly larger than in the transepithelial PRK with CXL group without and with analysis of covariance with the spherical equivalent change or corneal thickness change as a covariate. No significant differences in the biomechanically corrected IOP occurred preoperatively or postoperatively in either group. Conclusions Results indicate that prophylactic CXL combined with transepithelial PRK has a role in reducing the change in corneal biomechanical properties. The dynamic Scheimpflug analyzer showed stable biomechanically corrected IOP measurements preoperatively and postoperatively.

Original languageEnglish
Pages (from-to)937-945
Number of pages9
JournalJournal of Cataract and Refractive Surgery
Volume43
Issue number7
DOIs
Publication statusPublished - 2017 Jul

Fingerprint

Photorefractive Keratectomy
Intraocular Pressure
Republic of Korea
Medical Records
Medicine

All Science Journal Classification (ASJC) codes

  • Surgery
  • Ophthalmology
  • Sensory Systems

Cite this

@article{2ba82fe217734e19ab71b4a94e7ff577,
title = "Effect of accelerated corneal crosslinking combined with transepithelial photorefractive keratectomy on dynamic corneal response parameters and biomechanically corrected intraocular pressure measured with a dynamic Scheimpflug analyzer in healthy myopic patients",
abstract = "Purpose To evaluate the effect of accelerated corneal crosslinking (CXL) combined with transepithelial photorefractive keratectomy (PRK) on changes in new dynamic corneal response parameters and the biomechanically corrected intraocular pressure (IOP) measured using a dynamic Scheimpflug analyzer (Corvis ST). Setting Yonsei University College of Medicine and Eyereum Eye Clinic, Seoul, South Korea. Design Retrospective case series. Methods Medical records of eyes of healthy myopic patients having transepithelial PRK or transepithelial PRK with CXL were examined. Main outcome variables were the biomechanically corrected IOP and new dynamic corneal response parameters including the deformation amplitude ratio at 1.0 mm (DAR1) and at 2.0 mm (DAR2), stiffness at first applanation and at highest concavity, and the integrated inverse radius preoperatively and 6 months postoperatively. Results The study comprised 69 eyes (69 patients); 35 had transepithelial PRK and 34, transepithelial PRK with CXL. The DAR1, DAR2, and integrated inverse radius significantly increased, while stiffness at first applanation and at highest concavity decreased postoperatively in both groups. Changes in the DAR2 and integrated inverse radius in the transepithelial PRK group were significantly larger than in the transepithelial PRK with CXL group without and with analysis of covariance with the spherical equivalent change or corneal thickness change as a covariate. No significant differences in the biomechanically corrected IOP occurred preoperatively or postoperatively in either group. Conclusions Results indicate that prophylactic CXL combined with transepithelial PRK has a role in reducing the change in corneal biomechanical properties. The dynamic Scheimpflug analyzer showed stable biomechanically corrected IOP measurements preoperatively and postoperatively.",
author = "Hun Lee and Roberts, {Cynthia J.} and Renato Ambr{\'o}sio and Ahmed Elsheikh and Kang, {David Sung Yong} and Kim, {Tae im}",
year = "2017",
month = "7",
doi = "10.1016/j.jcrs.2017.04.036",
language = "English",
volume = "43",
pages = "937--945",
journal = "Journal of Cataract and Refractive Surgery",
issn = "0886-3350",
publisher = "Elsevier Inc.",
number = "7",

}

TY - JOUR

T1 - Effect of accelerated corneal crosslinking combined with transepithelial photorefractive keratectomy on dynamic corneal response parameters and biomechanically corrected intraocular pressure measured with a dynamic Scheimpflug analyzer in healthy myopic patients

AU - Lee, Hun

AU - Roberts, Cynthia J.

AU - Ambrósio, Renato

AU - Elsheikh, Ahmed

AU - Kang, David Sung Yong

AU - Kim, Tae im

PY - 2017/7

Y1 - 2017/7

N2 - Purpose To evaluate the effect of accelerated corneal crosslinking (CXL) combined with transepithelial photorefractive keratectomy (PRK) on changes in new dynamic corneal response parameters and the biomechanically corrected intraocular pressure (IOP) measured using a dynamic Scheimpflug analyzer (Corvis ST). Setting Yonsei University College of Medicine and Eyereum Eye Clinic, Seoul, South Korea. Design Retrospective case series. Methods Medical records of eyes of healthy myopic patients having transepithelial PRK or transepithelial PRK with CXL were examined. Main outcome variables were the biomechanically corrected IOP and new dynamic corneal response parameters including the deformation amplitude ratio at 1.0 mm (DAR1) and at 2.0 mm (DAR2), stiffness at first applanation and at highest concavity, and the integrated inverse radius preoperatively and 6 months postoperatively. Results The study comprised 69 eyes (69 patients); 35 had transepithelial PRK and 34, transepithelial PRK with CXL. The DAR1, DAR2, and integrated inverse radius significantly increased, while stiffness at first applanation and at highest concavity decreased postoperatively in both groups. Changes in the DAR2 and integrated inverse radius in the transepithelial PRK group were significantly larger than in the transepithelial PRK with CXL group without and with analysis of covariance with the spherical equivalent change or corneal thickness change as a covariate. No significant differences in the biomechanically corrected IOP occurred preoperatively or postoperatively in either group. Conclusions Results indicate that prophylactic CXL combined with transepithelial PRK has a role in reducing the change in corneal biomechanical properties. The dynamic Scheimpflug analyzer showed stable biomechanically corrected IOP measurements preoperatively and postoperatively.

AB - Purpose To evaluate the effect of accelerated corneal crosslinking (CXL) combined with transepithelial photorefractive keratectomy (PRK) on changes in new dynamic corneal response parameters and the biomechanically corrected intraocular pressure (IOP) measured using a dynamic Scheimpflug analyzer (Corvis ST). Setting Yonsei University College of Medicine and Eyereum Eye Clinic, Seoul, South Korea. Design Retrospective case series. Methods Medical records of eyes of healthy myopic patients having transepithelial PRK or transepithelial PRK with CXL were examined. Main outcome variables were the biomechanically corrected IOP and new dynamic corneal response parameters including the deformation amplitude ratio at 1.0 mm (DAR1) and at 2.0 mm (DAR2), stiffness at first applanation and at highest concavity, and the integrated inverse radius preoperatively and 6 months postoperatively. Results The study comprised 69 eyes (69 patients); 35 had transepithelial PRK and 34, transepithelial PRK with CXL. The DAR1, DAR2, and integrated inverse radius significantly increased, while stiffness at first applanation and at highest concavity decreased postoperatively in both groups. Changes in the DAR2 and integrated inverse radius in the transepithelial PRK group were significantly larger than in the transepithelial PRK with CXL group without and with analysis of covariance with the spherical equivalent change or corneal thickness change as a covariate. No significant differences in the biomechanically corrected IOP occurred preoperatively or postoperatively in either group. Conclusions Results indicate that prophylactic CXL combined with transepithelial PRK has a role in reducing the change in corneal biomechanical properties. The dynamic Scheimpflug analyzer showed stable biomechanically corrected IOP measurements preoperatively and postoperatively.

UR - http://www.scopus.com/inward/record.url?scp=85027577271&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027577271&partnerID=8YFLogxK

U2 - 10.1016/j.jcrs.2017.04.036

DO - 10.1016/j.jcrs.2017.04.036

M3 - Article

C2 - 28823441

AN - SCOPUS:85027577271

VL - 43

SP - 937

EP - 945

JO - Journal of Cataract and Refractive Surgery

JF - Journal of Cataract and Refractive Surgery

SN - 0886-3350

IS - 7

ER -