Effect of alumina and extended basicity on the viscosity and structure in the TiO2-MnO-Al2O3-8.64ZrO2-2. 77Na2O welding flux system

Jong Bae Kim, Il Sohn

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


The high temperature viscosity of the TiO2-MnO-Al 2O3-8.64ZrO2-2.77Na2O welding flux system was measured by the rotating spindle method to identify the relationship between the viscosity and melt structure at various compositions of TiO 2, MnO, and Al2O3 contents. At temperatures of 1 773 K to 1 748 K and fixed TiO2/MnO ratio, the effect of Al 2O3 on the viscosity was not significant, but slightly increased with higher Al2O3. At temperatures below 1 748 K, the effect of Al2O3 was more pronounced with increments of Al2O3 significantly increasing the viscosity of the molten flux. Increased extended basicity ((TiO2/+1.13MnO)/SiO 2) depolymerized the network structure, where TiO2 and MnO works to depolymerize the present melt. Raman analysis of as-quenched oxide melts from 1 773 K showed the symmetric [AlO4]-tetrahedral stretching vibrations to increase and the asymmetric [AlO6]-octahedral stretching vibrations to decrease with higher concentration of Al 2O3 at various fixed TiO2/MnO ratios suggesting polymerization of the structure with Al2O3 additions. The opposite trend could be observed with increasing extended basicity. XPS (xray photoelectron spectroscopy) results showed the bridged oxygen (Oo) to increase and the non-bridged oxygen (O-) to decrease with Al 2O3 additions and lower extended basicity also suggesting polymerization of the network structure in the present melt system.

Original languageEnglish
Pages (from-to)657-663
Number of pages7
JournalISIJ International
Issue number3
Publication statusPublished - 2014

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry


Dive into the research topics of 'Effect of alumina and extended basicity on the viscosity and structure in the TiO<sub>2</sub>-MnO-Al<sub>2</sub>O<sub>3</sub>-8.64ZrO<sub>2</sub>-2. 77Na<sub>2</sub>O welding flux system'. Together they form a unique fingerprint.

Cite this