Effect of endogenous bone marrow derived stem cells induced by AMD-3100 on expanded ischemic flap

Hii Sun Jeong, Hye Kyung Lee, Kwan Chul Tark, Dae Hyun Lew, Yoon Woo Koh, Chul Hoon Kim, In Suck Seo

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The purpose of this study was to devise an expanded ischemic flap model and to investigate the role of AMD-3100 (Plerixafor, chemokine receptor 4 inhibitor) in this model by confirming its effect on mobilization of stem cells from the bone marrow. Male Sprague- Dawley rats were used as an animal research model. The mobilization of stem cells from the bone marrow was confirmed in the AMD-3100-treated group. The fractions of endothelial progenitor cells (EPC) and the vascular endothelial growth factor receptor (VEGFR) 2+ cells in the peripheral blood were increased in groups treated with AMD-3100. The expression of vascular endothelial growth factor (VEGF) was increased in response to expansion or AMD injection. The expression of stromal cell derived factor (SDF)-1 and VEGFR2 were increased only in unexpanded flap treated with AMD-3100. Treatment with AMD-3100 increased both the number and area of blood vessels. However, there were no statistically significant differences in the survival area or physiologic microcirculation in rats from the other groups. This endogenous neovascularization induced by AMD-3100 may be a result of the increase in both the area and number of vessels, as well as paracrine augmentation of the expression of VEGF and EPCs. However, the presence of a tissue expander under the flap could block the neovascularization between the flap and the recipient regardless of AMD-3100 treatment and expansion.

Original languageEnglish
Pages (from-to)S237-S248
JournalJournal of Korean medical science
Volume29
DOIs
Publication statusPublished - 2014

All Science Journal Classification (ASJC) codes

  • Medicine(all)

Fingerprint Dive into the research topics of 'Effect of endogenous bone marrow derived stem cells induced by AMD-3100 on expanded ischemic flap'. Together they form a unique fingerprint.

  • Cite this