Abstract
There has been growing interest in developing nanoelectronic devices based on graphene because of its superior electrical properties. In particular, patterning graphene into a nanoribbon can open a bandgap that can be tuned by changing the ribbon width, imparting semiconducting properties. In this study, we report the effect of ribbon width on electrical transport properties of graphene nanoribbons (GNRs). Monolayer graphene sheets and Si nanowires (NWs) were prepared by chemical vapor deposition and a combination of nanosphere lithography and metal-assisted electroless etching from a Si wafer, respectively. Back-gated GNR field-effect transistors were fabricated on a heavily p-doped Si substrate coated with a 300 nm-thick SiO 2 layer, by O 2 reactive ion etching of graphene sheets using etch masks based on Si NWs aligned on the graphene between the two electrodes by a dielectrophoresis method. This resulted in GNRs with various widths in a highly controllable manner, where the on/off current ratio was inversely proportional to ribbon width. The field-effect mobility decreased with decreasing GNR widths due to carrier scattering at the GNR edges. These results demonstrate the formation of a bandgap in GNRs due to enhanced carrier confinement in the transverse direction and edge effects when the GNR width is reduced.
Original language | English |
---|---|
Article number | 7 |
Journal | Nano Convergence |
Volume | 5 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2018 Dec 1 |
Bibliographical note
Funding Information:This work was supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017M3D1A1040828), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01058982), Nano Material Technology Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016M3A7B4909942), the Future Semiconductor Device Technology Development Program (10044868) funded by Ministry of Trade, Industry & Energy (MOTIE) and Korea Semiconductor Research Consortium (KSRC), and Global Frontier R&D Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078873).
Publisher Copyright:
© 2018, The Author(s).
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Engineering(all)