Effectiveness of atrial fibrillation rotor ablation is dependent on conduction velocity: An in-silico 3-dimensional modeling study

Byounghyun Lim, Minki Hwang, Jun Seop Song, Ah Jin Ryu, Boyoung Joung, Eun Bo Shim, Hyungon Ryu, Hui Nam Pak

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Background We previously reported that stable rotors are observed in in-silico human atrial fibrillation (AF) models, and are well represented by a dominant frequency (DF). In the current study, we hypothesized that the outcome of DF ablation is affected by conduction velocity (CV) conditions and examined this hypothesis using in-silico 3D-AF modeling. Methods We integrated 3D CT images of left atrium obtained from 10 patients with persistent AF (80% male, 61.8±13.5 years old) into in-silico AF model. We compared AF maintenance durations (max 300s), spatiotemporal stabilities of DF, phase singularity (PS) number, lifespan of PS, and AF termination or defragmentation rates after virtual DF ablation with 5 different CV conditions (0.2, 0.3, 0.4, 0.5, and 0.6m/s). Results 1. AF maintenance duration (p<0.001), spatiotemporal mean variance of DF (p<0.001), and the number of PS (p = 0.023) showed CV dependent bimodal patterns (highest at CV0.4m/s and lowest at CV0.6m/s) consistently. 2. After 10% highest DF ablation, AF defragmentation rates were the lowest at CV0.4m/s (37.8%), but highest at CV0.5 and 0.6m/s (all 100%, p<0.001). 3. In the episodes with AF termination or defragmentation followed by 10% highest DF ablation, baseline AF maintenance duration was shorter (p<0.001), spatiotemporal mean variance of DF was lower (p = 0.014), and the number of PS was lower (p = 0.004) than those with failed AF defragmentation after DF ablation. Conclusion Virtual ablation of DF, which may indicate AF driver, was more likely to terminate or defragment AF with spatiotemporally stable DF, but not likely to do so in long-lasting and sustained AF conditions, depending on CV.

Original languageEnglish
Article numbere0190398
JournalPloS one
Volume12
Issue number12
DOIs
Publication statusPublished - 2017 Dec

Bibliographical note

Funding Information:
This research was supported by grants (A085136) from the Korea Health 21 R&D Project, the Ministry of Health and Welfare, [NRF-2017R1A2B4003983] from the Basic Science Research Program run by the National Research Foundation of Korea (NRF), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030495).

Publisher Copyright:
© 2017 Lim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Effectiveness of atrial fibrillation rotor ablation is dependent on conduction velocity: An in-silico 3-dimensional modeling study'. Together they form a unique fingerprint.

Cite this