Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors

Zhihong Huang, Jungwoo Oh, Sanjay K. Banerjee, Joe C. Campbell

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

The effectiveness of thin SiGe buffer layers in terminating threading dislocations and reducing photodiode dark current for Ge epitaxially grown on Si (001) has been investigated. The structural morphology of the films was studied by atomic force microscopy and transmission electron microscopy. The dark current of Ge on Si photodiodes can be reduced by over an order of magnitude by incorporating two different composition SiGe buffer layers. The origin of dark current and the effectiveness of thermal annealing the SiGe layers were also studied.

Original languageEnglish
Pages (from-to)238-242
Number of pages5
JournalIEEE Journal of Quantum Electronics
Volume43
Issue number3
DOIs
Publication statusPublished - 2007 Mar

Bibliographical note

Funding Information:
Manuscript received September 25, 2006; revised November 18, 2006. This work was supported in part by MARCO through the IFC program. Z. Huang is with the Microelectronics Research Center, College of Engineering, The University of Texas at Austin, Austin, TX 78758-4445 USA (e-mail: huang@ece.utexas.edu). J. Oh is with Front End Processes, SEMATECH, Austin, TX 78741 USA. S. K. Banerjee is with the Department of Electrical and Computer Engineering, College of Engineering, The University of Texas at Austin, Austin, TX 78712 USA (e-mail: banerjee@ece.utexas.edu). J. C. Campbell is with the School of Engineering and Applied Science, Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904-4743 USA (e-mail: jcc7s@virginia.edu). Digital Object Identifier 10.1109/JQE.2006.890395

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors'. Together they form a unique fingerprint.

Cite this