Abstract
The effects of anoxic conditions on product inhibition and the stability of L-ATC hydrolase were investigated in the conversion of D,L-2-amino-Δ2-thiazoline-4-carboxylic acid (D,L-ATC) to L-cystine using the cell free extract enzyme of Pseudomonas sp. in the presence of hydroxylamine. At L-cysteine equivalent levels, where one mole of L-cystine was counted as two moles of L-cysteine, L-cystine inhibited the L-ATC hydrolase reaction to a greater extent than L-cysteine. In air, the product occurred predominantly as L-cystine (94.9%), whereas in a nitrogen atmosphere the product occurred as a mixture of L-cysteine (39.3%) and L-cystine (40.7%). As a result, less product inhibition took place in nitrogen. The activity of L-ATC hydrolase was almost fully lost after 20 h of incubation by shaking at 30°C in air, but considerable activity remained under the anoxic conditions of nitrogen. A kinetic analysis of the reactions confirmed that reduced product inhibition and enhanced enzyme stability in nitrogen result in a more efficient enzyme reaction. The inactivation rate constant (k1) was estimated to be 0.11 h-1 in nitrogen and 0.22-1 in air, indicating that the stability of L-ATC hydrolase in nitrogen was greater than in air. The values of the K(p1), and K(p2) constants related to product inhibition were 43.36 mM and 30.48 mM for L-cysteine and L-cystine, respectively, where higher values were an indication of less product inhibition. The value of the rate constant (k2) for the oxidation of L-cysteine to L-cystine was 0.09 h-1 in nitrogen and 1.01 h-1 in air, suggesting that the oxidation of L-cysteine to L-cystine proceeds faster in air than in nitrogen.
Original language | English |
---|---|
Pages (from-to) | 185-193 |
Number of pages | 9 |
Journal | Acta Biotechnologica |
Volume | 17 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1997 Sep 18 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Biotechnology
- Bioengineering
- Applied Microbiology and Biotechnology
Cite this
}
Effects of anoxic conditions on the enzymatic conversion of D,L-2-amino-thiazoline-4-carboxylic acid to L-cystine. / Nam, K. H.; Ryu, O. H.; Park, J.; Shin, C. S.
In: Acta Biotechnologica, Vol. 17, No. 2, 18.09.1997, p. 185-193.Research output: Contribution to journal › Article
TY - JOUR
T1 - Effects of anoxic conditions on the enzymatic conversion of D,L-2-amino-thiazoline-4-carboxylic acid to L-cystine
AU - Nam, K. H.
AU - Ryu, O. H.
AU - Park, J.
AU - Shin, C. S.
PY - 1997/9/18
Y1 - 1997/9/18
N2 - The effects of anoxic conditions on product inhibition and the stability of L-ATC hydrolase were investigated in the conversion of D,L-2-amino-Δ2-thiazoline-4-carboxylic acid (D,L-ATC) to L-cystine using the cell free extract enzyme of Pseudomonas sp. in the presence of hydroxylamine. At L-cysteine equivalent levels, where one mole of L-cystine was counted as two moles of L-cysteine, L-cystine inhibited the L-ATC hydrolase reaction to a greater extent than L-cysteine. In air, the product occurred predominantly as L-cystine (94.9%), whereas in a nitrogen atmosphere the product occurred as a mixture of L-cysteine (39.3%) and L-cystine (40.7%). As a result, less product inhibition took place in nitrogen. The activity of L-ATC hydrolase was almost fully lost after 20 h of incubation by shaking at 30°C in air, but considerable activity remained under the anoxic conditions of nitrogen. A kinetic analysis of the reactions confirmed that reduced product inhibition and enhanced enzyme stability in nitrogen result in a more efficient enzyme reaction. The inactivation rate constant (k1) was estimated to be 0.11 h-1 in nitrogen and 0.22-1 in air, indicating that the stability of L-ATC hydrolase in nitrogen was greater than in air. The values of the K(p1), and K(p2) constants related to product inhibition were 43.36 mM and 30.48 mM for L-cysteine and L-cystine, respectively, where higher values were an indication of less product inhibition. The value of the rate constant (k2) for the oxidation of L-cysteine to L-cystine was 0.09 h-1 in nitrogen and 1.01 h-1 in air, suggesting that the oxidation of L-cysteine to L-cystine proceeds faster in air than in nitrogen.
AB - The effects of anoxic conditions on product inhibition and the stability of L-ATC hydrolase were investigated in the conversion of D,L-2-amino-Δ2-thiazoline-4-carboxylic acid (D,L-ATC) to L-cystine using the cell free extract enzyme of Pseudomonas sp. in the presence of hydroxylamine. At L-cysteine equivalent levels, where one mole of L-cystine was counted as two moles of L-cysteine, L-cystine inhibited the L-ATC hydrolase reaction to a greater extent than L-cysteine. In air, the product occurred predominantly as L-cystine (94.9%), whereas in a nitrogen atmosphere the product occurred as a mixture of L-cysteine (39.3%) and L-cystine (40.7%). As a result, less product inhibition took place in nitrogen. The activity of L-ATC hydrolase was almost fully lost after 20 h of incubation by shaking at 30°C in air, but considerable activity remained under the anoxic conditions of nitrogen. A kinetic analysis of the reactions confirmed that reduced product inhibition and enhanced enzyme stability in nitrogen result in a more efficient enzyme reaction. The inactivation rate constant (k1) was estimated to be 0.11 h-1 in nitrogen and 0.22-1 in air, indicating that the stability of L-ATC hydrolase in nitrogen was greater than in air. The values of the K(p1), and K(p2) constants related to product inhibition were 43.36 mM and 30.48 mM for L-cysteine and L-cystine, respectively, where higher values were an indication of less product inhibition. The value of the rate constant (k2) for the oxidation of L-cysteine to L-cystine was 0.09 h-1 in nitrogen and 1.01 h-1 in air, suggesting that the oxidation of L-cysteine to L-cystine proceeds faster in air than in nitrogen.
UR - http://www.scopus.com/inward/record.url?scp=0030870116&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030870116&partnerID=8YFLogxK
U2 - 10.1002/abio.370170210
DO - 10.1002/abio.370170210
M3 - Article
AN - SCOPUS:0030870116
VL - 17
SP - 185
EP - 193
JO - Engineering in Life Sciences
JF - Engineering in Life Sciences
SN - 1618-0240
IS - 2
ER -