Effects of baseline serum uric acid and apolipoprotein E4 on longitudinal cognition and cerebral metabolism

for the Alzheimer's Disease Neuroimaging Initiative

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Serum uric acid, a natural antioxidant, may have a protective effect on the progression of Alzheimer's disease (AD). To investigate the effect of serum uric acid on longitudinal cognitive and brain metabolic changes, we utilized data on baseline serum uric acid levels, APOE genotyping, and longitudinal cognitive scores from the Alzheimer's Disease Neuroimaging Initiative for 1,343 participants with normal cognition (NC), mild cognitive impairment (MCI), or dementia. In 979 participants, brain metabolism was measured using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images. Higher serum uric acid levels exhibited a detrimental effect on NC, whereas a protective trend was observed in individuals with cognitive impairment. Interestingly, higher uric acid levels were associated with a slower decline in cognitive scores and brain metabolism in females with MCI, and this effect was found in APOE4 carriers, but not in non-carriers. Longitudinal AD-like patterns of brain metabolism on FDG-PET images also appeared to mediate the effects of baseline uric acid levels on longitudinal cognitive decline. In summary, higher serum uric acid may interact with APOE4 to alleviate longitudinal metabolic changes and cognitive decline in female MCI patients.

Original languageEnglish
Pages (from-to)223-231
Number of pages9
JournalNeurobiology of Aging
Publication statusPublished - 2021 Oct

Bibliographical note

Funding Information:
This research was supported by a National Research Foundation of Korea Grant funded by the Korean Government ( NRF- 2019R1I1A1A01059454 ).

Funding Information:
The authors are grateful to all the participants who have taken part in this study. Data collection and sharing for this project was funded by ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research has provided funding to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( http://www.fnih.org/ ). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Publisher Copyright:
© 2021 Elsevier Inc.

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Ageing
  • Clinical Neurology
  • Developmental Biology
  • Geriatrics and Gerontology


Dive into the research topics of 'Effects of baseline serum uric acid and apolipoprotein E4 on longitudinal cognition and cerebral metabolism'. Together they form a unique fingerprint.

Cite this