TY - JOUR
T1 - Effects of blood urea nitrogen independent of the estimated glomerular filtration rate on the development of anemia in non-dialysis chronic kidney disease
T2 - The results of the KNOW-CKD study
AU - Kim, Hyo Jin
AU - Kim, Tae Eun
AU - Han, Miyeun
AU - Yi, Yongin
AU - Jeong, Jong Cheol
AU - Chin, Ho Jun
AU - Song, Sang Heon
AU - Lee, Joongyub
AU - Lee, Kyu Beck
AU - Sung, Suah
AU - Han, Seung Hyeok
AU - Seong, Eun Young
AU - Ahn, Curie
AU - Oh, Kook Hwan
AU - Chae, Dong Wan
N1 - Publisher Copyright:
Copyright: © 2021 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/9
Y1 - 2021/9
N2 - Background Anemia is a common complication of chronic kidney disease (CKD). Blood urea nitrogen (BUN) in CKD represents nitrogenous uremic toxin accumulation which could be involved in anemia of CKD. We investigated the effects of BUN independent of estimated glomerular filtration rate (eGFR) on anemia in non-dialysis CKD (NDCKD). Methods This prospective study included 2,196 subjects enrolled in the KoreaN Cohort Study for Outcome in Patients With Chronic Kidney Disease (KNOW-CKD) cohort with BUN and hemoglobin level data. Initially, we investigated the association between BUN and hemoglobin level. To examine the impact of baseline BUN on the incident anemia, a longitudinal study was performed on 1,169 patients without anemia at study enrollment. BUN residuals were obtained from the fitted curve between BUN and eGFR. Anemia was defined as a hemoglobin level of <13.0 g/dL for men and <12.0 g/dL for women. Results BUN residuals were not related to eGFR but to daily protein intake (DPI), while BUN was related to both eGFR and DPI. BUN was inversely associated with hemoglobin level (β -0.03; 95% confidence interval [CI] -0.04, -0.03; P <0.001) in the multivariable linear regression analysis adjusted for multiple confounders including eGFR, and BUN residual used instead of BUN was also inversely associated with hemoglobin level (β -0.03; 95% CI -0.04, -0.02; P <0.001). Among the 1,169 subjects without anemia at baseline, 414 (35.4%) subjects newly developed anemia during the follow-up period of 37.5 ± 22.1 months. In the multivariable Cox regression analysis with adjustment, both high BUN level (Hazard ratio [HR] 1.02; 95% CI 1.01, 1.04; P = 0.002) and BUN residual used instead of BUN (HR 1.02; 95% CI 1.00, 1.04; P = 0.031) increased the risk of anemia development. Moreover, BUN, rather than eGFR, increased the risk of anemia development in patients with CKD stage 3 in the multivariable Cox regression. Conclusion Higher BUN levels derived from inappropriately high protein intake relative to renal function were associated with low hemoglobin levels and the increased risk of anemia independent of eGFR in NDCKD patients.
AB - Background Anemia is a common complication of chronic kidney disease (CKD). Blood urea nitrogen (BUN) in CKD represents nitrogenous uremic toxin accumulation which could be involved in anemia of CKD. We investigated the effects of BUN independent of estimated glomerular filtration rate (eGFR) on anemia in non-dialysis CKD (NDCKD). Methods This prospective study included 2,196 subjects enrolled in the KoreaN Cohort Study for Outcome in Patients With Chronic Kidney Disease (KNOW-CKD) cohort with BUN and hemoglobin level data. Initially, we investigated the association between BUN and hemoglobin level. To examine the impact of baseline BUN on the incident anemia, a longitudinal study was performed on 1,169 patients without anemia at study enrollment. BUN residuals were obtained from the fitted curve between BUN and eGFR. Anemia was defined as a hemoglobin level of <13.0 g/dL for men and <12.0 g/dL for women. Results BUN residuals were not related to eGFR but to daily protein intake (DPI), while BUN was related to both eGFR and DPI. BUN was inversely associated with hemoglobin level (β -0.03; 95% confidence interval [CI] -0.04, -0.03; P <0.001) in the multivariable linear regression analysis adjusted for multiple confounders including eGFR, and BUN residual used instead of BUN was also inversely associated with hemoglobin level (β -0.03; 95% CI -0.04, -0.02; P <0.001). Among the 1,169 subjects without anemia at baseline, 414 (35.4%) subjects newly developed anemia during the follow-up period of 37.5 ± 22.1 months. In the multivariable Cox regression analysis with adjustment, both high BUN level (Hazard ratio [HR] 1.02; 95% CI 1.01, 1.04; P = 0.002) and BUN residual used instead of BUN (HR 1.02; 95% CI 1.00, 1.04; P = 0.031) increased the risk of anemia development. Moreover, BUN, rather than eGFR, increased the risk of anemia development in patients with CKD stage 3 in the multivariable Cox regression. Conclusion Higher BUN levels derived from inappropriately high protein intake relative to renal function were associated with low hemoglobin levels and the increased risk of anemia independent of eGFR in NDCKD patients.
UR - http://www.scopus.com/inward/record.url?scp=85114732334&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114732334&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0257305
DO - 10.1371/journal.pone.0257305
M3 - Article
C2 - 34506574
AN - SCOPUS:85114732334
SN - 1932-6203
VL - 16
JO - PLoS One
JF - PLoS One
IS - 9 September
M1 - e0257305
ER -