Abstract
In this study, we characterized silicon oxide (SiO2) thin film prepared on polyethylene terephthalate (PET) substrates by electron-beam (e-beam) deposition for transparent barrier application. As the chamber temperature is increased from 30 to 110°C, the roughness increases while water vapor transmission rate (WVTR) decreases. Under these conditions, WVTR of PET can be reduced from a level of 0.57 g/m2/day (bare subtrate) to 0.05 g/m2/day after application of a 200-nm-thick SiO2 coating at 110°C. A more efficient way to improve permeation of PET was carried out by using a double sided coating of a 5-μm-thick parylene film. It was found that WVTR for PET substrates can be reduced to a level of -0.2 g/m2/day. The double-sided parylene coating on PET could contribute in lowering the stress of oxide film, which greatly improves the WVTR data. These results indicate that the Sip2/parylene/PET barrier coatings have a high potential for flexible organic light-emitting diode (OLED) applications.
Original language | English |
---|---|
Pages (from-to) | L827-L829 |
Journal | Japanese Journal of Applied Physics, Part 2: Letters |
Volume | 45 |
Issue number | 29-32 |
DOIs | |
Publication status | Published - 2006 Aug 11 |
All Science Journal Classification (ASJC) codes
- Engineering(all)
- Physics and Astronomy (miscellaneous)
- Physics and Astronomy(all)