Abstract
In this study, we investigated hybrid bulk heterojunction organic solar cells containing ZnO nanoparticles blended with poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and having poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) or N,N-dimethylformamide (DMF)-modulated PEDOT:PSS buffer layers. The reference cell, which had a P3HT:PCBM active layer sandwiched between ITO\PEDOT:PSS and LiF\Al electrodes, exhibited an efficiency of 1.55%. The ZnO nanoparticle-doped active layer (ITO\PEDOT:PSS(DMF) \ZnO:P3HT:PCBM\LiF\Al) exhibited a higher efficiency of 3.39% due to the modulated PEDOT:PSS buffer layer with low resistivity and the hybrid active layer containing ZnO nanoparticles. Here, we demonstrate that the low resistivity of the PEDOT:PSS layer can improve the Jsc value of hybrid solar cells, and ZnO nanoparticles can enhance the Voc value of organic solar cells.
Original language | English |
---|---|
Pages (from-to) | 11530-11534 |
Number of pages | 5 |
Journal | ACS Applied Materials and Interfaces |
Volume | 5 |
Issue number | 22 |
DOIs | |
Publication status | Published - 2013 Nov 27 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)