Efficacy of a nickel-titanium ultrasonic instrument for biofilm removal in a simulated complex root canal

Young Ryul Oh, Hye Min Ku, Dohyun Kim, Su Jung Shin, Il Young Jung

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

This study evaluated the effectiveness of NiTi ultrasonic tips for Enterococcus faecalis (E. faecalis) biofilm removal in simulated complex root canals. Sixty root canal models consisting of a 30-degree curved main canal and two lateral canals were constructed from polydimethylsiloxane and incubated with E. faecalis. Irrigants in root canals were activated using a manual syringe (SI), a stainless steel (SS) instrument, a nickel-titanium (Ni-Ti) ultrasonic instrument, or a sonic instrument (EA). Instruments of SI, SS, and NiTi-9 groups were placed 9 mm from the apex, whereas those in NiTi-2 and EA groups were placed 2 mm from the apex. The efficacy of each method was determined as the ratio of fluorescence concentration before and after activation. In the apical curved canal, the highest efficacy was found in the NiTi-2 group (99.40%), followed by SI (84.25%), EA (80.38%), SS (76.93%), and NiTi-9 (67.29%) groups. In lateral canals 1 and 2, the efficacy was the highest in the NiTi-2 group and the lowest in the SI group. The NiTi ultrasonic instrument could effectively remove biofilms in the curved canal and lateral canals. This instrument should be introduced close to the working length. An up-and-down motion of the activation instrument is recommended.

Original languageEnglish
Article number4914
Pages (from-to)1-10
Number of pages10
JournalMaterials
Volume13
Issue number21
DOIs
Publication statusPublished - 2020 Nov 1

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Efficacy of a nickel-titanium ultrasonic instrument for biofilm removal in a simulated complex root canal'. Together they form a unique fingerprint.

Cite this