Efficient long-term amplification of hepatitis B virus isolates after infection of slow proliferating HepG2-NTCP cells

Alexander König, Jaewon Yang, Eunji Jo, Kyu Ho Paul Park, Hyun Kim, Thoa Thi Than, Xiyong Song, Xiaoxuan Qi, Xinghong Dai, Soonju Park, David Shum, Wang Shick Ryu, Jung Hee Kim, Seung Kew Yoon, Jun Yong Park, Sang Hoon Ahn, Kwang Hyub Han, Wolfram Hubert Gerlich, Marc Peter Windisch

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)


Background & Aims: As hepatitis B virus (HBV) spreads through the infected liver it is simultaneously secreted into the blood. HBV-susceptible in vitro infection models do not efficiently amplify viral progeny or support cell-to-cell spread. We sought to establish a cell culture system for the amplification of infectious HBV from clinical specimens. Methods: An HBV-susceptible sodium-taurocholate cotransporting polypeptide-overexpressing HepG2 cell clone (HepG2-NTCPsec+) producing high titers of infectious progeny was selected. Secreted HBV progeny were characterized by native gel electrophoresis and electron microscopy. Comparative RNA-seq transcriptomics was performed to quantify the expression of host proviral and restriction factors. Viral spread routes were evaluated using HBV entry- or replication inhibitors, visualization of viral cell-to-cell spread in reporter cells, and nearest neighbor infection determination. Amplification kinetics of HBV genotypes B-D were analyzed. Results: Infected HepG2-NTCPsec+ secreted high levels of large HBV surface protein-enveloped infectious HBV progeny with typical appearance under electron microscopy. RNA-seq transcriptomics revealed that HBV does not induce significant gene expression changes in HepG2-NTCPsec+, however, transcription factors favoring HBV amplification were more strongly expressed than in less permissive HepG2-NTCPsec−. Upon inoculation with HBV-containing patient sera, rates of infected cells increased from 10% initially to 70% by viral spread to adjacent cells, and viral progeny and antigens were efficiently secreted. HepG2-NTCPsec+ supported up to 1,300-fold net amplification of HBV genomes depending on the source of virus. Viral spread and amplification were abolished by entry and replication inhibitors; viral rebound was observed after inhibitor discontinuation. Conclusions: The novel HepG2-NTCPsec+ cells efficiently support the complete HBV life cycle, long-term viral spread and amplification of HBV derived from patients or cell culture, resembling relevant features of HBV-infected patients. Lay summary: Currently available laboratory systems are unable to reproduce the dynamics of hepatitis B virus (HBV) spread through the infected liver and release into the blood. We developed a slowly dividing liver-derived cell line which multiplies infectious viral particles upon inoculation with patient- or cell culture-derived HBV. This new infection model can improve therapy by measuring, in advance, the sensitivity of a patient's HBV strain to specific antiviral drugs.

Original languageEnglish
Pages (from-to)289-300
Number of pages12
JournalJournal of Hepatology
Issue number2
Publication statusPublished - 2019 Aug

Bibliographical note

Funding Information:
We would like to thank Dieter Glebe (Giessen University) for providing antibodies and plasmids, and Gil-Je Lee and Ernest Jonathan Cechetto (Perkin-Elmer) for technical assistance in handling microscopy samples and for providing support for the phenotypic analysis of HBV cluster formation. We would like to thank Eunjin Do (Yonsei University) for technical assistance in cccDNA Southern blotting, Stephan Urban and Yi Ni (Heidelberg University) for providing protocols and technical support for the isolation of infectious virions from HepAD38 cells, and Inyoung Kim (Blickfang designstudio) for graphic design support. We thank Heinz. We thank the National Research Foundation of Korea (MSIT and NRF) and the Gyeonggi Provincial Government for financial support.

Funding Information:
This study was supported by the National Research Foundation of Korea ( MSIT 2017M3A9G6068246 and NRF-2014R1A2A1A11052535 ) and the Gyeonggi Provincial Government.

Publisher Copyright:
© 2019 European Association for the Study of the Liver

All Science Journal Classification (ASJC) codes

  • Hepatology


Dive into the research topics of 'Efficient long-term amplification of hepatitis B virus isolates after infection of slow proliferating HepG2-NTCP cells'. Together they form a unique fingerprint.

Cite this