Abstract
This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.
Original language | English |
---|---|
Article number | 1064 |
Journal | Sensors (Switzerland) |
Volume | 17 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2017 May 8 |
Bibliographical note
Funding Information:This research was supported by a grant (16CTAP-C117247-01) from Technology Advancement Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Publisher Copyright:
© 2017 by the authors. Licensee MDPI, Basel, Switzerland.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Biochemistry
- Atomic and Molecular Physics, and Optics
- Instrumentation
- Electrical and Electronic Engineering