Abstract
The advent of 3D printing has had a disruptive impact in manufacturing and can potentially revolutionize industrial fields. Thermoplastic materials printable into complex structures are widely employed for 3D printing. Polylactic acid (PLA) is among the most promising polymers used for 3D printing, owing to its low cost, biodegradability, and nontoxicity. However, PLA is electrically insulating and mechanically weak; this limits its use in a variety of 3D printing applications. This study demonstrates a straightforward and environment-friendly method to fabricate conductive and mechanically reinforced PLA composites by incorporating graphene nanoplatelets (GNPs). To fully utilize the superior electrical and mechanical properties of graphene, liquid-exfoliated GNPs are dispersed in isopropyl alcohol without the addition of any surfactant and combined with PLA dissolved in chloroform. The GNP-PLA composites exhibit improved mechanical properties (improvement in tensile strength by 44% and maximum strain by 57%) even at a low GNP threshold concentration of 2 wt %. The GNP-PLA composites also exhibit an electrical conductivity of over 1 mS/cm at >1.2 wt %. The GNP-PLA composites can be 3D-printed into various features with electrical conductivity and mechanical flexibility. This work presents a new direction toward advanced 3D printing technology by providing higher flexibility in designing multifunctional 3D printed features.
Original language | English |
---|---|
Pages (from-to) | 11841-11848 |
Number of pages | 8 |
Journal | ACS Applied Materials and Interfaces |
Volume | 11 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2019 Mar 27 |
Bibliographical note
Funding Information:This work was supported by the International Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) of Korea (NRF-2016K1A3A1A25003573), and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2016M3A7B4910940, 2017R1A5A1014862, SRC program: vdWMRC center). A.C. is supported by the Yonsei University Research Fund (Yonsei Frontier Lab. Young Researcher Supporting Program) of 2018. We also acknowledge the “Ministero degli Affari Esteri e della Cooperazione Internazionale, Direzione Generale per la Promozione del Sistema Paese”.
Publisher Copyright:
© 2019 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Materials Science(all)