TY - JOUR
T1 - Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te)
AU - Chia, Xinyi
AU - Ambrosi, Adriano
AU - Lazar, Petr
AU - Sofer, Zdeněk
AU - Pumera, Martin
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2016.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2016
Y1 - 2016
N2 - The revelation of MoS2 as an efficient electrocatalyst for the hydrogen evolution reaction (HER) has ratcheted up interest in other transition metal dichalcogenides (TMDs). To date, extensive studies have been focused towards semiconducting Group 6 TMDs while research into metallic Group 5 TMDs has been comparatively limited. Past computational screening of Group 5 TMDs showed propitious Gibbs free energy of the adsorbed hydrogen (ΔGH) for HER, especially for VS2, which prompted us to experimentally explore their HER efficiency. In addition to the HER electrocatalytic performance, we examine the inherent electrochemistry and the charge-transfer property of the entire set of Group 5 TMDs in the bulk form: VS2, VSe2, VTe2, NbS2, NbSe2, NbTe2, TaS2, TaSe2 and TaTe2. We demonstrate that the nine Group 5 TMDs show distinctive inherent electroactivities arising from their intrinsic electrochemical processes or surface oxides. TaS2 possesses the fastest heterogeneous electron transfer (HET) rate at 3.4 × 10-3 cm s-1 amongst the Group 5 TMDs and may be ideal for electrochemical sensing. Chalcogen dependence is evident in the electrochemical charge-transfer ability of the Group 5 TMDs whereby tellurides show slower HET rates than sulfides and selenides. We identify VTe2 as the best-performing material for HER contrary to the widely predicted VS2. VTe2 manifests the lowest HER overpotential at 0.5 V vs. RHE and Tafel slope of 55 mV dec-1. Interestingly, the HER performance of vanadium dichalcogenides and Group 5 tellurides shows chalcogen- and transition metal- dependence, respectively. Reasons behind their HER performance have also been proposed from our theoretical studies found on thermodynamics and kinetics. Broadly, the HER performances of bulk Group 5 TMDs are less outstanding than those expected despite being true metals. This fundamental study provides fresh insights into the electrochemical and electrocatalytic characteristics of metallic Group 5 TMDs that will be indispensable for the development of TMDs in future applications.
AB - The revelation of MoS2 as an efficient electrocatalyst for the hydrogen evolution reaction (HER) has ratcheted up interest in other transition metal dichalcogenides (TMDs). To date, extensive studies have been focused towards semiconducting Group 6 TMDs while research into metallic Group 5 TMDs has been comparatively limited. Past computational screening of Group 5 TMDs showed propitious Gibbs free energy of the adsorbed hydrogen (ΔGH) for HER, especially for VS2, which prompted us to experimentally explore their HER efficiency. In addition to the HER electrocatalytic performance, we examine the inherent electrochemistry and the charge-transfer property of the entire set of Group 5 TMDs in the bulk form: VS2, VSe2, VTe2, NbS2, NbSe2, NbTe2, TaS2, TaSe2 and TaTe2. We demonstrate that the nine Group 5 TMDs show distinctive inherent electroactivities arising from their intrinsic electrochemical processes or surface oxides. TaS2 possesses the fastest heterogeneous electron transfer (HET) rate at 3.4 × 10-3 cm s-1 amongst the Group 5 TMDs and may be ideal for electrochemical sensing. Chalcogen dependence is evident in the electrochemical charge-transfer ability of the Group 5 TMDs whereby tellurides show slower HET rates than sulfides and selenides. We identify VTe2 as the best-performing material for HER contrary to the widely predicted VS2. VTe2 manifests the lowest HER overpotential at 0.5 V vs. RHE and Tafel slope of 55 mV dec-1. Interestingly, the HER performance of vanadium dichalcogenides and Group 5 tellurides shows chalcogen- and transition metal- dependence, respectively. Reasons behind their HER performance have also been proposed from our theoretical studies found on thermodynamics and kinetics. Broadly, the HER performances of bulk Group 5 TMDs are less outstanding than those expected despite being true metals. This fundamental study provides fresh insights into the electrochemical and electrocatalytic characteristics of metallic Group 5 TMDs that will be indispensable for the development of TMDs in future applications.
UR - http://www.scopus.com/inward/record.url?scp=84988568783&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84988568783&partnerID=8YFLogxK
U2 - 10.1039/c6ta05110c
DO - 10.1039/c6ta05110c
M3 - Article
AN - SCOPUS:84988568783
VL - 4
SP - 14241
EP - 14253
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
SN - 2050-7488
IS - 37
ER -